
A S M O OT H T R A N S F O R M AT I O N O F
P S E U D O - P O W E R L A W S

a.1 adjusting for bounded support
In many situations with power laws, we use the terminology "infinite" to describe the "very
large". In cases where "infinite" corresponds to an unknown upper (or lower) bound, it
would be certainly proper to use infinite. But there are many cases of known upper bound,
for which the notion of infinite can be misapplied. The distribution is no longer a power law;
we are just using power law as terminology.

So "infinite" is often used when it is not technically adequate a designation in many
cases. Further, the standard mathematical methods and proofs we have that were derived
for power laws do not map to closed intervals.

Consider wars and violence: the distribution cannot be unbounded since the maximum
amount of fatalities cannot exceed the world population; the mean cannot be technically
"infinite". The same applies to problems in hydrology, size of companies (they cannot exceed
the total GDP), forest fires, insurance claims, etc.

In a conversation with the late Benoit Mandelbrot, we discussed the difference between
"infinite support" and "large but finite" (with obviously known upper bound) and the
effect on infinite mean/variance. We both agreed that the expectation would be at the
upper bound. It seemed natural.

It turned out that we were wrong, at least about the mean.
Higher moments, of course will be pulled towards the upper bound.

Using X as the r.v. for number of incidences in war, consider a smooth rescaling function
ϕ : [L, H] → [L, ∞) satisfying:

i ϕ is "smooth": ϕ ∈ C∞ [or ϕ is analytic (though not necessarily smooth), yet a stronger
condition.],

ii ϕ−1(∞) = H,
iii ϕ−1(L) = L,

which gives us:

ϕ(x) = L − H log
(

H − x
H − L

)
(A.1)

We can perform appropriate analytics on x′ = ϕ(x) given that it is unbounded, and
properly fit power law exponents. Then we can rescale back for the properties of X.

The distribution of x can be rederived as follows from the distribution of X′:
∫ ∞

L
f (x′) dx′ =

∫ ϕ−1(∞)

L
g(x) dx, (A.2)

where ϕ−1(u) = (L − H)e
L−u

H + H.
We were surprised to discover that:
• "infinite mean" is not at the boundary H as we expected.
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smooth transformation of pseudo-power laws

• one can actually get the kurtosis to see how unreliable the standard deviation. But
mean deviation remains –sort of – reliable.

Let us see how the moments behave when they are "infinite" with the simplest example.
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Figure A.1: Loglogplot
comparison of f and g,
showing smooth-pasting
style boundary around
H.
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Figure A.2: We have L =
1, H = 102, 103, 104, 105.
The mean doesn’t seem
to be "infinite" or close to
the boundary, even with
α < 1. We get the
maximal values of 15.91,
52.4, 169, 537, respec-
tively, with α = 1

2 .

a.2 simplest case of straight pareto
(Note that we are using the lowercase f both for the PDF and the distribution.) Where
x′ = ϕ(x). From

f (x′) = αLαx−α−1, x′ ∈ [L, ∞) (A.3)

we get the transformed

g(x) =
αHLα

(
H log

(
H−L
H−x

)
+ L
)−α−1

H − x
, x ∈ [L, H] (A.4)
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a.3 more general case of generalized beta 2nd kind
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Figure A.3: Mean Devi-
ation for L = 1, H =
103, 104, 105.

with first moment
E(X) = H − αeL/H(H − L)Eα+1

(
L
H

)
(A.5)

where E_.(.) is the exponential integral En(z) =
∫ ∞

1
e−zt

tn dt also En(z) = xn−1Γ(1 − n, z).
Second moment

E(X2) = αeL/H(H − L)
(

eL/H(H − L)Eα+1

(
2L
H

)
− 2HEα+1

(
L
H

))
+ H2 (A.6)

Fourth moment

(A.7)
E(X4) = αeL/H(H − L)

(
eL/H(H − L)

(
6H2Eα+1

(
2L
H

)
+ eL/H(H − L)

(
eL/H(H − L)Eα+1

(
4L
H

)
− 4HEα+1

(
3L
H

)))
− 4H3Eα+1

(
L
H

))
+ H4

(A.8)P(X < E(X)) = 1 − Lα
(

H
(

α log
(

H
L

)
− log

(
αΓ
(
−α,

L
H

))))−α

a.3 more general case of generalized beta 2nd kind
Note that L needs to match the left support of the distribution so, in this case, L is necessarily
0. Should we need a lower bound at L, would have to rescale by changing the random
variable to x + L or, better, (x + L) H−L

H .

f (x′) =
α
(

x′

β

)αp−1 (( x
β

)α
+ 1
)−p−q

βB(p, q)
, x′ > 0
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smooth transformation of pseudo-power laws

We can parametrize p, q, and β to get the appropriate subdistribution. For instance it simpli-
fies to the Dagum distribution[p, α, β] when q = 1, to the Singh Maddala distribution[q, α, β]
when p = 1, and to the log logistic distribution[α, β] when both p = 1 and q = 1.

g(x) =
αH

β (H − x) B(p, q)

(
− H log(1− x

H )
β

)αp−1

((
−

H log
(

1− x′
H

)

β

)α

+ 1

)p+q , x ∈ [0, H) (A.9)

After a few manipulations

E(X) =
αH

βB(p, q)

∫ ∞

0

(
He−v − H

) ( Hv
β

)αp−1

((
Hv
β

)α
+ 1
)p+q dv (A.10)

We cannot get explicit solutions without fixing a parameter, α or p and q. In the infinite mean
case:

E(X)|α=1= −
H Γ(p)

(
U
(

p, 1 − q, β
H

)
− Γ(q)

Γ(p+q)

)

B(p, q)

where U is the confluent hypergeometric function U(a, b, z) = 1
Γ(a)
∫ ∞

0 ta−1(t + 1)−a+b−1et(−z) dt.
Infinite variance case:

(A.11)

E(X)|α=2 = H 1F2

(
p;

1
2

, 1 − q;− β2

4H2

)
− 1

Γ(p)Γ(q)

− 2HΓ(−2q)
(

H
β

)−2q
Γ(p + q)

(
1F2

(
p + q; q +

1
2

, q + 1;− β2

4H2

)

+ βΓ
(

p +
1
2

)
Γ
(

q − 1
2

)
1F2

(
p +

1
2

;
3
2

,
3
2
− q;− β2

4H2

)
+ HΓ(p)Γ(q)

)

a.3.1 Findings

i Kurtosis is too high to make STD reliable
ii MD appears also too high but reliable

iii Working on its distribution

a.4 conclusion
Even with wildest powerlaws the mean stays well behaved, several order of magnitude below
the hard upper bound.
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