Bitcoin, Currencies, and Fragility: Supplementary Discussions

Nassim Nicholas Taleb*† †

†Universa Investments

†Tandon School of Engineering, New York University

RATIONAL EXPECTATIONS

Discretely seen, a price is expected cash flow received at the end of the next period t+1 plus expected price at period t+1. So let P_t , C_t , and I_t be the price, cash flow (payout to investor) and information, respectively, at period t, with r_d the discount rate. Without any loss, we simplify by assuming C_i and r_d are not stochastic. We note that "cash flow" to investor includes any payout, not just dividend, so C_t includes the liquidation value.

$$P_{t} = \frac{1}{1 + r_{d}} \left(C_{t+1} + \underbrace{\mathbb{E}(P_{t+1}|I_{t})}_{\frac{1}{1 + r_{d}} \left(C_{t+2} + \underbrace{\mathbb{E}(\mathbb{E}(P_{t+2}|I_{t+1})|I_{t})}_{\dots} \right) \right),$$
(1)

By the law of iterated expectations,

$$\mathbb{E}\left(\mathbb{E}(P_{t+2}|_{I_{t+1}})|_{I_t}\right) = \mathbb{E}(P_{t+2}|_{I_t}).$$

Allora, noting that, at the present, seen from period t, $\mathbb{E}(P_{t+1}|_{I_t})$ is written as $\mathbb{E}(P_{t+1})$.

$$P_{t} = \lim_{n \to \infty} \left(\underbrace{\sum_{i=1}^{n} \left(\frac{1}{1+r_{d}} \right)^{i} C_{t+i}}_{=0 \text{ for bitcoin}} + \left(\frac{1}{1+r_{d}} \right)^{n} \mathbb{E}(P_{t+n}) \right),$$
(2)

We notice that the second term vanishes under the smallest positive discount rate. In the standard rational bubble model [1] P (actually, its equivalent, the component that doesn't translate into future cash flow) needs to grow around r_d forever. Cases of P growing faster than r_d are never considered as the price becomes explosive (intuitively, given that we are dealing with infinities, it would exceed the value of the economy) [2].

As we increase n, additional cash goes into C_{t+n} ; in principle, for $n \to \infty$ it must be all cash outside of bubbles.

EARNING-FREE ASSETS WITH ABSORBING BARRIER

Now, bitcoin is all in the second term, with a hitch: there is an absorbing barrier — should there be an interruption of

the ledger updating process, some loss of interest in it, a technological replacement, its value is gone forever. As we insist, bitcoin requires distributed attention.

We define the stopping time as $\tau \triangleq \inf\{n > 0; P_{t+n} = 0\}$, with $P_{>\tau} = 0$.

Comment 1: Failure rate

Critically the probability of hitting the barrier does not need to come from price dynamics, but from any failure rate — the only assumption here is a failure rate >0.

So we impose a layer on top of the dynamics.

$$\mathbb{E}(P_{t+n}) = \mathbb{E}(P_{t+n}|_{t+n<\tau}) \, \mathbb{P}(t+n<\tau) + \underbrace{\mathbb{E}(P_{t+n}|_{t+n\geq\tau})}_{=0} \, \mathbb{P}(t+n\geq\tau) \quad (3)$$

Let π be the probability of being absorbed over a single period. Rewriting Eq. 1 with no cash flow, i.e. $C_{t+i} = 0 \ \forall i$, and eliminating cases for which the expectation is infinite:

$$P_{t} = \frac{1}{1+r_{d}} \left((1-\pi) \underbrace{\mathbb{E}(P_{t+1}|I_{t}|(t+1)<\tau))}_{\frac{1}{1+r_{d}}} \underbrace{\mathbb{E}(P_{t+2}|I_{t}|(t+2)<\tau))}_{\dots} \right). \tag{4}$$

We therefore have

$$P_{t} = \lim_{n \to \infty} \left(\frac{1 - \pi}{1 + r_{d}} \right)^{n} \mathbb{E}(P_{t+n}|_{(t+n) < \tau}) = 0$$
 (5)

For the price to be positive now, P_t must grow *forever*, exactly at a gigantic exponential scale, $e^{n(r+\pi)}$, without remission, and with total certainty.

NNT1@nyu.edu

Comment 2: The problem of P_{∞}

The argument that P can grow faster than $e^{n(r+\pi)}$ for a while and accumulate valuation is insufficient: once it stops growing, by backward induction, future absorption makes P_t valued at 0. Remember that we are dealing with infinities.

Furthermore variable mortality rates makes the needed growth vastly in excess of both rates r_d and π . Let π be stochastic with realizations $\pi(1+a)$ and $\pi(1-a)$ — two Diracs at the mean deviation of π . Then the required growth rate must be $e^{n(r+\pi+\sigma)}$, where $\sigma = \frac{\log(\cosh(\pi a n))}{n}$, an additional convexity term $\sigma \approx a\pi$.

REFERENCES

- [1] O. J. Blanchard and M. W. Watson, "Bubbles, rational expectations and financial markets," *NBER working paper*, no. w0945, 1982.
- [2] M. K. Brunnermeier, "Bubbles," in *Banking Crises*. Springer, 2016, pp. 28–36