
4 Effects of Higher Orders of
Uncertainty

Chapter Summary 4: The Spectrum Between Uncertainty and Risk.
There has been a bit of discussions about the distinction between "un-
certainty" and "risk". We believe in gradation of uncertainty at the level
of the probability distribution itself (a "meta" or higher order of uncer-
tainty.) One end of the spectrum, "Knightian risk", is not available for
us mortals in the real world. We show how the effect on fat tails and
on the calibration of tail exponents and reveal inconsistencies in models
such as Markowitz or those used for intertemporal discounting (as many
violations of "rationality" aren’t violations .

4.1 Meta-Probability Distribution

When one assumes knowledge of a probability distribution, but has uncertainty attend-
ing the parameters, or when one has no knowledge of which probability distribution to
consider, the situation is called "uncertainty in the Knightian sense" by decision theo-
risrs(Knight, 1923). "Risk" is when the probabilities are computable without an error
rate. Such an animal does not exist in the real world. The entire distinction is a lunacy,
since no parameter should be rationally computed witout an error rate. We find it prefer-
able to talk about degrees of uncertainty about risk/uncertainty, using metadistribution,
or metaprobability.

The Effect of Estimation Error, General Case

The idea of model error from missed uncertainty attending the parameters (another layer
of randomness) is as follows.

Most estimations in social science, economics (and elsewhere) take, as input, an average
or expected parameter,

�
↵ =

Z

↵ �(↵) d↵, (4.1)

where ↵ is � distributed (deemed to be so a priori or from past samples), and regardless of
the dispersion of ↵, build a probability distribution for x that relies on the mean estimated
parameter, p(X = x)= p

⇣

x
�

�

�

�
↵
⌘

, rather than the more appropriate metaprobability
adjusted probability for the density:

p(x) =

Z

�(↵) d↵ (4.2)
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Figure 4.1: Log-log plot illustration of the asymptotic tail exponent with two states.

In other words, if one is not certain about a parameter ↵, there is an inescapable layer
of stochasticity; such stochasticity raises the expected (metaprobability-adjusted) prob-
ability if it is < 1

2

and lowers it otherwise. The uncertainty is fundamentally epistemic,
includes incertitude, in the sense of lack of certainty about the parameter.

The model bias becomes an equivalent of the Jensen gap (the difference between the
two sides of Jensen’s inequality), typically positive since probability is convex away from
the center of the distribution. We get the bias !A from the differences in the steps in
integration

!A =

Z

�(↵) p(x|↵) d↵� p

✓

x|

Z

↵�(↵) d↵

◆

With f(x) a function , f(x) = x for the mean, etc., we get the higher order bias !A0

(4.3)!A0
=

Z

✓
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Now assume the distribution of ↵ as discrete n states, with ↵ = (↵i)
n
i=1

each with
associated probability � = �i_i=1^n,

Pn
i=1

�i = 1. Then 4.2 becomes

p(x) = �i

 

n
X

i=1

p (x |↵i )

!

(4.4)

So far this holds for ↵ any parameter of any distribution.

4.2 Metadistribution and the Calibration of Power Laws

Remark 1. In the presence of a layer of metadistributions (from uncertainty about
the parameters), the asymptotic tail exponent for a powerlaw corresponds to the lowest
possible tail exponent regardless of its probability.
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This explains "Black Swan" effects, i.e., why measurements tend to chronically under-
estimate tail contributions, rather than merely deliver imprecise but unbiased estimates.

When the perturbation affects the standard deviation of a Gaussian or similar non-
powerlaw tailed distribution, the end product is the weighted average of the probabilities.
However, a powerlaw distribution with errors about the possible tail exponent will bear
the asymptotic properties of the lowest exponent, not the average exponent.
Now assume p(X=x) a standard Pareto Distribution with ↵ the tail exponent being

estimated, p(x|↵) = ↵x�↵�1x↵
min

, where x
min

is the lower bound for x,

p(x) =
n
X

i=1

↵ix
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i

�1x↵
i
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Taking it to the limit

limit
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where K is a strictly positive constant and ↵⇤ = min↵i
1in

. In other words
Pn
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is asymptotically equivalent to a constant times x↵⇤
+1. The lowest parameter in the space

of all possibilities becomes the dominant parameter for the tail exponent.
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Figure 4.2: Illustration of the convexity bias for a Gaussian from raising small probabilities:
The plot shows the STD effect on P>x, and compares P>6 with a STD of 1.5 compared to P>
6 assuming a linear combination of 1.2 and 1.8 (here a(1)=1/5).

Figure 4.1 shows the different situations: a) p(x|�↵), b)
Pn

i=1

p (x |↵i )�i and c) p (x |↵⇤
).

We can see how the last two converge. The asymptotic Jensen Gap !A becomes p(x|↵⇤
)�

p(x|
�
↵).

Implications

Whenever we estimate the tail exponent from samples, we are likely to underestimate
the thickness of the tails, an observation made about Monte Carlo generated ↵-stable
variates and the estimated results (the “Weron effect”)[74].

The higher the estimation variance, the lower the true exponent.
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The asymptotic exponent is the lowest possible one. It does not even require estima-
tion.

Metaprobabilistically, if one isn’t sure about the probability distribution, and there is
a probability that the variable is unbounded and “could be” powerlaw distributed, then
it is powerlaw distributed, and of the lowest exponent.

The obvious conclusion is to in the presence of powerlaw tails, focus on changing
payoffs to clip tail exposures to limit !A0 and “robustify” tail exposures, making the
computation problem go away.

4.3 The Effect of Metaprobability on Fat Tails

Recall that the tail fattening methods in 2.4 and 2.6.These are based on randomizing
the variance. Small probabilities rise precisely because they are convex to perturbations
of the parameters (the scale) of the probability distribution.

4.4 Fukushima, Or How Errors Compound

“Risk management failed on several levels at Fukushima Daiichi. Both TEPCO and its
captured regulator bear responsibility. First, highly tailored geophysical models pre-
dicted an infinitesimal chance of the region suffering an earthquake as powerful as the
Tohoku quake. This model uses historical seismic data to estimate the local frequency
of earthquakes of various magnitudes; none of the quakes in the data was bigger than
magnitude 8.0. Second, the plant’s risk analysis did not consider the type of cascading,
systemic failures that precipitated the meltdown. TEPCO never conceived of a situation
in which the reactors shut down in response to an earthquake, and a tsunami topped the
seawall, and the cooling pools inside the reactor buildings were overstuffed with spent
fuel rods, and the main control room became too radioactive for workers to survive, and
damage to local infrastructure delayed reinforcement, and hydrogen explosions breached
the reactors’ outer containment structures. Instead, TEPCO and its regulators addressed
each of these risks independently and judged the plant safe to operate as is.”Nick Werle,
n+1, published by the n+1 Foundation, Brooklyn NY

4.5 The Markowitz inconsistency

Assume that someone tells you that the probability of an event is exactly zero. You ask
him where he got this from. "Baal told me" is the answer. In such case, the person is
coherent, but would be deemed unrealistic by non-Baalists. But if on the other hand,
the person tells you "I estimated it to be zero," we have a problem. The person is
both unrealistic and inconsistent. Something estimated needs to have an estimation
error. So probability cannot be zero if it is estimated, its lower bound is linked to the
estimation error; the higher the estimation error, the higher the probability, up to a
point. As with Laplace’s argument of total ignorance, an infinite estimation error pushes
the probability toward 1

2

. We will return to the implication of the mistake; take for now
that anything estimating a parameter and then putting it into an equation is different
from estimating the equation across parameters. And Markowitz was inconsistent by
starting his "seminal" paper with "Assume you know E and V " (that is, the expectation
and the variance). At the end of the paper he accepts that they need to be estimated, and
what is worse, with a combination of statistical techniques and the "judgment of practical
men." Well, if these parameters need to be estimated, with an error, then the derivations
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need to be written differently and, of course, we would have no such model. Economic
models are extremely fragile to assumptions, in the sense that a slight alteration in
these assumptions can lead to extremely consequential differences in the results. The
perturbations can be seen as follows. Let

*

X = (X
1

, X
2

, . . . , Xm) be the vector of random
variables representing returns. Consider the joint probability distribution f (x

1

, . . . , xm) .

We denote the m-variate multivariate Normal distribution by N(

*
µ,⌃), with mean vector

*
µ , variance-covariance matrix ⌃, and joint pdf,

f
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(4.5)

where *
x = (x

1

, . . . , xm) 2 Rm, and ⌃ is a symmetric, positive definite (m⇥m) matrix.
The weights matrix

*

⌦ = (!
1

, . . . ,!m),normalized, with
PN

i=1

!i = 1 (allowing exposures
to be both positive and negative): The scalar of concern is; r = ⌦

T .X, which happens
to be normally distributed, with variance

v = ~!T .⌃.~!

The Markowitz portfolio construction, through simple optimization, gets an optimal ~!⇤,
obtained by, say, minimizing variance under constraints, getting the smallest ~!T .⌃.~!
under constraints of returns, a standard Lagrange multiplier. So done statically, the
problem gives a certain result that misses the metadistribution. Now the problem is that
the covariance matrix is a random object, and needs to be treated as so. So let us focus
on what can happen under these conditions:

Route 1: The stochastic volatility route. This route is insufficient but can reveal
structural defects for the construction. We can apply the same simplied variance pre-
serving heuristic as in 2.4 to fatten the tails. Where a is a scalar that determines the
intensity of stochastic volatility, ⌃

1

= ⌃(1 � a) and ⌃

2

= ⌃(1 � a). Simply, given the
conservation of the Gaussian distribution under weighted summation, maps to v(1 + a)
and v(1�a) for a Gaussian and we could see the same effect as in 2.4. The corresponding
increase in fragility is explained in Chapter 15.

Route 2: Full random parameters route. Now one can have a fully random matrix
—not just the overal level of the covariance matrix. The problem is working with matrices
is cumbersome, particularly in higher dimensions, because one element of the covariance
can vary unconstrained, but the degrees of freedom are now reduced for the matrix to
remain positive definite. A possible technique is to extract the principal components,
necessarily orthogonal, and randomize them without such restrictions.

4.6 Psychological pseudo-biases under second layer of uncer-
tainty.

Often psychologists and behavioral economists find "irrational behavior" (or call it under
something more polite like "biased") as agents do not appear to follow a normative model
and violate their models of rationality. But almost all these correspond to missing a
second layer of uncertainty by a tinky-toy first-order model that doesn’t get nonlinearities
� it is the researcher who is making a mistake, not the real-world agent. Recall that
the expansion from "small world" to "larger world" can be simulated by perturbation of
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Figure 4.3: The effect of Ha,p(t)
"utility" or prospect theory of un-
der second order effect on variance.
Here � = 1, µ = 1 and t variable.
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parameters, or "stochasticization", that is making something that appears deterministic
a random variable itself. Benartzi and Thaler [3], for instance, find an explanation that
agents are victims of a disease labelled "myopic loss aversion" in not investing enough
in equities, not realizing that these agents may have a more complex, fat-tailed model.
Under fat tails, no such puzzle exists, and if it does, it is certainly not from such myopia.
This approach invites "paternalism" in "nudging" the preferences of agents in a manner

to fit professors-without-skin-in-the-game-using-wrong-models.
The problem also applies to GMOs and how "risk experts" find them acceptable; re-

searchers pathologize those who do not partake of the baby models (thin tailed). The
point, an extension of the Pinker problem, is discussed in Chapter x.
Let us use our approach in detecting convexity to three specific problems: 1) the myopic

loss aversion that we just discussed, 2) time preferences, 3) probability matching.

4.6.1 Myopic loss aversion

Take the prospect theory valuation w function for x changes in wealth.

w�,↵(x) = x↵
x�0

� �(�x↵
) x<0

Where �µt,�
p
t(x) is the Normal Distribution density with corresponding mean and

standard deviation (scaled by t)
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The expected "utility" (in the prospect sense):

H
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t(x) dx (4.6)
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We can see from 4.7 that the more frequent sampling of the performance translates
into worse utility. So what Benartzi and Thaler did was try to find the sampling period
"myopia" that translates into the sampling frequency that causes the "premium" —the
error being that they missed second order effects.
Now under variations of � with stochatic effects, heuristically captured, the story

changes: what if there is a very small probability that the variance gets multiplied by a
large number, with the total variance remaining the same? The key here is that we are
not even changing the variance at all: we are only shifting the distribution to the tails.
We are here generously assuming that by the law of large numbers it was established
that the "equity premium puzzle" was true and that stocks really outperformed bonds.
So we switch between two states, (1 + a)�2 w.p. p and (1� a) w.p. (1� p).
Rewriting 4.6

Ha,p(t) =

Z 1

�1
w�,↵(x)

⇣

p�µ t,
p
1+a�

p
t(x) + (1� p)�µ t,

p
1�a�

p
t(x)

⌘

dx (4.8)

Result. Conclusively, as can be seen in figures 4.3 and 4.4, second order effects can-
cel the statements made from "myopic" loss aversion. This doesn’t mean that myopia
doesn’t have effects, rather that it cannot explain the "equity premium", not from the
outside (i.e. the distribution might have different returns", but from the inside, owing
to the structure of the Kahneman-Tversky value function v(x).

Comment. We used the (1+a) heuristic largely for illustrative reasons; we could use a
full distribution for �2 with similar results. For instance the gamma distribution with

density f(v) =

v��1e�
↵v

V

(

V

↵

)

��

�(�) with expectation V matching the variance used in the
"equity premium" theory.
Rewriting 4.8 under that form,

Z 1

�1

Z 1

0

w�,↵(x)�µ t,
p
v t(x) f(v) dv dx

Which has a closed form solution (though a bit lengthy for here).
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4.6.2 Time preference under model error

This author once watched with a great deal of horror one Laibson [37] at a conference in
Columbia University present the idea that having one massage today to two tomorrow,
but reversing in a year from nowm is irrational and we need to remedy it with some
policy. (For a review of time discounting and intertemporal preferences, see [27], as
economists temps to impart what seems to be a varying "discount rate" in a simplified
model).
Intuitively, what if I introduce the probability that the person offering the massage is

full of balloney? It would clearly make me both prefer immediacy at almost any cost
and conditionally on his being around at a future date, reverse the preference. This is
what we will model next.
First, time discounting has to have a geometric form, so preference doesn’t become

negative: linear discounting of the form Ct, where C is a constant ant t is time into the
future is ruled out: we need something like Ct or, to extract the rate, (1+ k)t which can
be mathematically further simplified into an exponential, by taking it to the continuous
time limit. Exponential discounting has the form e�k t. Effectively, such a discounting
method using a shallow model prevents "time inconsistency", so with � < t:

lim

t!1

e�k t

e�k (t��)
= e�k �

Now add another layer of stochasticity: the discount parameter, for which we use the
symbol �, is now stochastic.
So we now can only treat H(t) as

H(t) =

Z

e�� t�(�) d�

It is easy to prove the general case that under symmetric stochasticization of intensity
�� (that is, with probabilities 1

2

around the center of the distribution) using the same
technique we did in 2.4:
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⌘
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Where cosh is the cosine hyperbolic function � which will converge to a certain value
where intertemporal preferences are flat in the future.

Example: Gamma Distribution. Under the gamma distribution with support in

R+, with parameters ↵ and �, �(�) = ��↵�↵�1e
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so
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H(t� �,↵,�)
= 1
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Meaning that preferences become flat in the future no matter how steep they are in the
present, which explains the drop in discount rate in the economics literature.
Further, fudging the distribution and normalizing it, when

�(�)=
e�

�

k

k
,

we get the normatively obtained (not empirical pathology) so-called hyperbolic discount-
ing:

H(t) =
1

1 + k t


