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A severe problem with risk bearing is when one does not have the faintest idea about the 
risks incurred. A more severe problem is when one does not have the faintest idea about the 
risks incurred yet thinks he has a precise idea of them. Simply, one needs a probability 
distribution to be able to compute the risks and assess the likelihood of some events.  

These probability distributions are not directly observable, which makes any risk calculation 
suspicious since it hinges on knowledge about these distributions. Do we have enough data? 
If the distribution is, say, the traditional bell-shaped Gaussian, then yes, we may say that we 
have sufficient data. But if the distribution is not from such well-bred family, then we do not 
have enough data. But how do we know which distribution we have on our hands? Well, 
from the data itself.  If one needs a probability distribution to gauge knowledge about the 
future behavior of the distribution from its past results, and if, at the same time, one needs 
the past to derive a probability distribution in the first place, then we are facing a severe 
regress loop–a problem of self reference akin to that of Epimenides the Cretan saying 
whether the Cretans are liars or not liars. And this self-reference problem is only the 
beginning. 

What is a probability distribution? Mathematically, it is a function with various properties over 
a domain of “possible outcomes”, X, which assigns values to (some) subsets of X. A 
probability distribution describes a general property of a system: a die is a fair die if the 
probability distribution assigned to it gives the values… It is not that different, essentially, 
than describing mathematically other properties of the system (such as describing its mass 
by assigning it a numerical value of two kilograms).  

The probability function is derived from specific instances from the system’s past: the tosses 
of the die in the past might justify the conclusion that, in fact, the die has the property of 
being fair, and thus correctly described by the probability function above. Typically with time 
series one uses the past for sample, and generates attributes of the future based on what 
was observed in the past. Very elegant perhaps, very rapid shortcut maybe, but certainly 
dependent on the following: that the properties of the future resemble those of the past, 
that the observed properties in the past are sufficient, and that one has an idea on how 
large a sample of the past one needs to observe to infer properties about the future. 

But there are worst news. Some distributions change all the time, so no matter how large 
the data, definite attributes about the risks of a given event cannot be inferred. Either the 
properties are slippery, or they are unstable, or they become unstable because we tend to 
act upon them and cause some changes in them.  

Then what is all such fuss about “scientific risk management” in the social sciences with 
plenty of equations, plenty of data, and neither any adequate empirical validity (these 
methods regularly fail to estimate the risks that matter) or any intellectual one (the 
argument above).  Are we missing something?   
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An example. Consider the statement "it is a ten sigma event"TP

3
PT, which is frequently heard in 

connection with an operator in a stochastic environment who, facing an unforeseen adverse 
rare event, rationalizes it by attributing the event to a realization of a random process whose 
moments are well known by him, rather than considering the possibility that he used the 
wrong probability distribution.   

Risk management in the social sciences (particularly Economics) is plagued by the following 
central problem: one does not observe probability distributions, merely the outcome of 
random generators. Much of the sophistication in the growing science of risk measurement 
(since Markowitz 1952) has gone into the mathematical and econometric details of the 
process, rather than realizing that the hazards of using the wrong probability distribution will 
carry more effect than those that can be displayed by the distribution itself. This recalls the 
story of the drunkard looking for his lost keys at night under the lantern, because "that is 
where the light is". One example is the blowup of the hedge fund Long Term Capital 
Management in Greenwich, ConnecticutTP

4
PT. The partners explained the blowup as the result of 

"ten sigma event", which should take place once per lifetime of the universe. Perhaps it 
would be more convincing to consider that, rather, they used the wrong distribution. 

It is important to focus on catastrophic events for this discussion, because they are the ones 
that cause the more effect –so no matter how low their probability (assuming it is as low as 
operators seem to believe) the effect on the expectation will be high. We shall call such 
catastrophic events black swan events.  Karl Popper remarkedTP

5
PT that when it comes to 

generalizations like “all swans are white”, it is enough for one black swan to exist for this 
conclusion to be false. Furthermore, before you find the black swan, no amount of 
information about white swans – whether you observed one, 100, or 1,000,000 of them – 
could help you to determine whether or not the generalization “all swans are white” is true 
or not.  

We claims that risk bearing agents are in the same situations. Not only can they not tell 
before the fact whether a catastrophic event will happen, but no amount of information 
about the past behavior of the market will allow them to limit their ignorance--say, by 
assigning meaningful probabilities to the “black swan” event.  The only thing they can 
honestly say about catastrophic events before the fact is: “it might happen”. And, if it does 
indeed happen, then it can completely destroy our previous conclusions about the 
expectation operator, just like finding a black swan does to the hypothesis “all swans are 
white”. But by then, it’s too late.  

                                            

TP

3
PT That is, an event which is ten standard deviations away from the mean given a Normal distribution. 

Its probability is about once in several times the life of the universe. 

TP

4
PT Lowenstein 2000. 

TP

5
PT We use “remarked” not “noticed”—Aristotle already “noticed” this fact; it’s what he did with the fact 

that’s important.  
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Obviously, mathematical statistics is unequipped to answer questions about whether or not 
such catastrophic events will happen: it assumes the outcomes of the process we observe is 
governed by a probability distribution of a certain sort (usually, a Gaussian curve.) It tells us 
nothing about why to prefer this type of “well behaved” distributions to those who have 
“catastrophic” distributions, or what to do if we suspect the probability distributions might 
change on us unexpectedly.  

This leads us to consider epistemology. By epistemology we mean the problem of the theory 
of knowledge, although in a more applied sense than problems currently dealt with in the 
discipline: what can we know about the future, given the past? We claim that there are good 
philosophical and scientific reasons to believe that, in economics and the social sciences, one 
cannot exclude the possibility of future “black swan events”.  

 

  THREE TYPES OF DECISION MAKING AND THE PROBLEM OF RISK 
MANAGEMENT 

Suppose one wants to know whether or not UPU is the case for some proposition UPU – “The 
current president of the United States is George W. Bush, Jr.”; “The next coin I will toss will 
land ‘heads’”;  “There are advanced life forms on a planet orbiting the star Tau Ceti”.  

In the first case, one can become certain of the truth-value of the proposition if one has the 
right data:  who is the president of the United States.  If one has to choose one’s actions 
based on the truth (or falsity) of this proposition – whether it is appropriate, for example, to 
greet Mr. Bush as “Mr. President” – one is in a state of decision making under certainty. In 
the second case, one cannot find out the truth-value of the proposition, but one can find out 
the probability of it being true.  There is – in practice - no way to tell whether or not the coin 
will land “heads” or “tails” on its next toss, but under certain conditions one can conclude 
that p(‘heads’) = p(‘tails’) = 0.5.  If one has to choose one's actions based on the truth (or 
falsity) of this proposition – for example, whether or not to accept a bet with 1:3 odds that 
the coin will land “heads” – one is in a state of decision making under risk.   

In the third case, not only can one not find out the truth-value of the proposition, but one 
cannot give it any meaningful probability.  It is not only that one doesn’t know whether 
advanced life exist on Tau Ceti; one does not have any information that would enable one to 
even estimate its probability.  If one must make a decision based on whether or not such life 
exists, it is a case of decision making under uncertaintyTP

6.
PT  See Knight, 1921, and Keynes, 

1937, for the difference between risk and uncertaintly as first defined. 

                                            

TP

6
PTFor the first distinction between risk and uncertainty see Knight (1921) for what became known as 

"Knightian risk" and "Knightian  uncertainty".  In this framework , the distinction is irrelevant, actually 
misleading, since, outside of laboratory experiments, the operator does not know beforehand if he is 
in a situation of “Kightian risk”.  
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More relevant to economics, is the case when one needs to make decisions based whether 
or not future social, economical, or political events occur – say, whether or not a war breaks 
out.  Many thinkers believed that, where the future depends not only on the physical 
universe but on human actions, there are no laws – even probabilistic laws – that determine 
the outcome; one is always “under uncertainty”TP

7
PT. As Keynes(1937) says: 

By “uncertain” knowledge… I do not mean merely to 
distinguish what is known for certain from what is only 
probable.  The game of roulette is not subject, in this sense, to 
uncertainty… The sense in which I am using the term is that in 
which the prospect of a European war is uncertain, or the price 
of copper and the rate of interest twenty years hence, or the 
obsolescence of a new invention… About these matters, there 
is no scientific basis on which to form any calculable probability 
whatever.  We simply do not know!TP

8
PT 

  

Certainty, risk, and uncertainty differ not merely in the probabilities (or range of 
probabilities) one assigns to UPU, but in the strategies one must use to make a decision under 
these different conditions.  Traditionally, in the “certainty” case, one chooses the outcome 
with the highest utility. In the “risk” case, one chooses the outcome with the highest 
expected utilityTP

9
PT.  In the (completely) “uncertain” case, many strategies have been 

proposed.  The most famous one is the minmax strategy (von Neumann and Morgenstern, 
1944; Wald, 1950), but others exist as well,TP

 
PTsuch as Savage’s “minmax of Regret” or 

“Horowitz’s alpha”. These strategies require bounded distributions.  In the event of the 
distributions being unbounded the literature provides no meaningful answer. 

 

                                            

TP

7
PTQueasiness about the issue of uncertainty, especially in the case of such future events, had lead 

Ramsey (1931), DeFinetti(1937), and Savage(1954) to develop a “personalistic” or “subjective” view 
of probability, independent of any objective chance or lack thereof. 

TP

8
PT“We simply do not know” is not necessarily a pessimistic claim. Indeed, Shackle(1955) bases his 

entire economic theory on this “essential unknowledge” – that is, uncertainty - of the future.  It is this 
“unknowledge” that allows for effective human choice and free will: for the human ability to create a 
specific future out of “unknowledge” by its efforts. 

TP

9
PTThese ideas seem almost tautological today, but this of course is not so.  It took von Neumann and 

Morgenstern(1944), with their rigorous mathematical treatment, to convince the world that one can 
assign a meaningful expected-utility function to the different options when one makes choices under 
risk or uncertainty, and that maximizing this expected utility (as opposed to some other parameter) is 
the “rational” thing to do.  The idea of “expected utility” per se is already in Bernoulli(1738) and 
Cramer(1728), but for a variety of reasons its importance was not clearly recognized at the time. 
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  THE CENTRAL PROBLEM OF RISK BEARING 

Using a decision-making strategy relevant to decision under risk in situations that are best 
described as cases of uncertainty, will lead to grief. If a shadowy man in a street corner 
offers me to play a game of three-card Monte, I will quickly lose everything if I consider the 
game a risk situation with p(winning) = 1/3.  I should also consider the possibility that the 
game is rigged and my actual chances of winning are closer to zero.  Being uncertain where 
in the range [0, 1/3] does my real chance of winning lies should lead one to the (minmax) 
uncertainty strategy, and reject the bet. 

We claim that the practice of risk management (defined as the monitoring of the possibility 
and magnitude of adverse outcomes) subjects agents to just such mistakes.  We argue 
below that, for various reasons, risk managers cannot rule out “catastrophic events”. We 
then show that this ever-present possibility of black swan events means that, in most 
situations,  Risk managers are essentially uncertain of the future in the Knightian sense: 
where no meaningful probability can be assigned to possible future results.  

Worse, it means that in many cases no known lower (or upper) bound can even be assigned 
to the range of outcomes;   

worst of all., it means that, while it is often the case that sampling or other actions can 
reduce the uncertainty in many situations, risk managers often face situations where no 
amount of information will help narrow this uncertainty. 

The general problem of risk management is that, due to essential properties of the 
generators risk managers are dealing with, they are dealing with a situation of essential 
uncertainty, and not of risk. 

To put the same point slightly more formally: risk managers look at collection of state 
spacesTP

10
PT that have a cumulative probability that exceeds a given arbitrary number. That 

implies that a generator of a certain general type (e.g., known probability distribution: 
Normal, Binomial, Poisson, etc. or mere histogram of frequencies) determines the 
occurrences.  This generator has specific parameters (e.g. a specific mean, standard 
deviation, and higher-level moments) that – together with the information about its general 
type – determine the values of its distribution.  Once the risk manager settles on the 
distribution, he can calculate the “risk” – e.g., the probability - of certain states of the world 
in which he is interested. 

In almost all important cases, whether in the “hard” or “soft” sciences, the generator is 
hidden,.  There is no independent way to find out the parameters – e.g. the mean, standard 
deviation, etc. - of the generator except for trying to infer it from the past behavior of the 
generator. On the other hand,  in order to give any estimate of these parameters in the first 
place, one must first assume that the generator in question is of a certain general type: that 

                                            

TP

10
PTBy "state-space" is meant the foundational Arrow-Debreu state-space framework in neoclassical 

economics. 
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it is a Normal generator, or a Poisson generator, etc. The agent needs to provide a joint 
estimation of the generator and the parameters. 

Under some circumstances, one is justified in assuming that the generator is of a certain 
general type and that the estimation of parameters from past behavior is reliable.  This is the 
situation, for example, in the case of a repeated coin toss as one can observe the nature of 
the generator and assess the boundedness of its payoffs.   

Under other circumstances, one might be justified in assuming that the generator is of a 
certain general type, but not be justified in using the past data to tell us anything reliable 
about the moments of the generator, no matter how much data one has.   

Under even more troubling circumstances, one might have no justification not only for 
guessing the generator’s parameters, but also in guessing what general type of generator 
one is dealing with.  In that case, naturally, it is meaningless to assign any values to the 
parameters of the generator, since we don’t know what parameters to look for in the first 
place. 

We claim that most situations risk managers deal with are just such “bad” cases where one 
cannot figure out the general type of generator solely from the data, or at least give 
worthwhile estimate of its parameters.  This means that any relation between the risks they 
calculate for  “black swan” events, and the actual risks of such events, may be purely 
coincidental.  We are in uncertainty:  we cannot tell not only whether or not UXU will happen, 
but not even give any reliable estimate of what p(UXU) is.  The cardinal sin risk managers 
commit is to “force” the square peg of uncertainty into the round hole of risk, by becoming 
convinced without justification both of the generator type and of the generator parameters.   

In the remainder of this paper we present the problem in the “Gedanken” format. Then we 
examine the optimal policy (if one exists) in the presence of uncertainty attending the 
generator. 

 Four “Gedanken” Monte Carlo Experiments 
 Let us introduce an invisible generator of a stochastic process. Associated with a probability 
space it produces observable outcomes. What can these outcomes reveal to us about the 
generator – and, in turn, about the future outcomes?  What – if anything – do they tell us 
about its mean, variance, and higher order moments, or how likely the results in the future 
are to match the past?   

The answer depends, of course, on the properties of the generator. As said above, Mother 
Nature failed to endow us with the ability to observe the generator--doubly so in the case of 
social science generators (particularly in economics). 

 Let us consider four cases. In all of these cases we observe mere realizations while the 
generator is operated from behind a veil. Assume that the draws are generated by a Monte 
Carlo generation by a person who refuses to reveal the program, but would offer samples of 
the series. 
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Table 1: The Four Gedanken Experiments 

Gedanken Probability 
Space 

Selected Process Effect Comments 

1 Bounded  Bernoulli Fast convergence "Easiest" case 

2 Unbounded Gaussian 
(General) 

Semi-fast 
convergence 

"Easy" case 

3 Unbounded  Gaussian + 
jumps (mixed) 

Slow convergence 
(sometimes too 
slow) at unknown 
rate. 

Problems with 
solutions 

4 Unbounded  Lévy-Stable (with 
α≤1 )11 

No convergence No known solutions 

  

 

THE “REGULAR” CASE, TYPE I: DICE AND CARDS 
The simplest kind of random process (or “chance setups” as they are sometimes called is 
when all possible realizations of the process are bounded.  A trivial case is the one of tossing 
a die.  The probability space only allows discrete outcomes between 1 and 6, inclusive. 

The effect of having the wrong moments of the distribution is benign.   First, note that the 
generator is bounded: the outcome cannot be more than 6 or less than 1.  One cannot be 
off by more than a finite amount in estimating the mean, and similarly by some finite 
amount when estimating the other moments (although, to be sure, it might become a 
relatively large amount for higher-level moments) (note the difference between unbounded 
and infinite. As long as the moments exist, one must be off by only a finite amount, no 
matter what one guesses. The point is that the finite amount is unbounded by anything a 
priori. Give examples in literature—original one, preferably, E.).   

Second, the bounded-ness of the generator means that there are no extreme events,  There 
are no rare, low-probability events that any short run of the generator is unlikely to cover, 
but yet have a significant effect on the value of the true moments. There are certainly no 
“black swan” events—no outcomes whose result could destroy our previous estimates of the 
generator’s moments no matter how  much previous data we have. That is, E(UXUBnB) (the 
observed mean) is likely to be close to E(UXU) (the “real”) mean since there is no rare, 1-in-

                                            

11 More technically, Taleb shows in Taleb (2006) that the α<1 is not necessarily the cutting point. 
Entire classes of  scalable distributions converge to the Gaussian too slowly to be of any significance –
by a misunderstanding of Central Limit Theorem and its speed  of reaching the limit. 
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1,000,000 chance of the die landing “1,000,000” – which would raise E(UXU) from the E(UXU) of 
a “regular” die almost by 1 but will not be in the observed outcomes xB1B, xB2B, … xBnB unless one 
is extremely lucky.  (Make the example more mathematical.)  

  

THE “REGULAR” CASE, TYPE II: NORMAL DISTRIBUTION 

A more complicated case is the situation where the probability space is unbounded.  
Consider the normal distribution with density function fB2B.  In this case, there is a certain >0 
probability for the outcome to be arbitrarily high or low; for it to be >M or <m for arbitrary 
M, m∈R.   

However, as M increase s and m decreases, the probability of the outcome to be >M or <m 
becomes very small very quickly.  

Although the outcomes are unbounded the epistemic value of the parameters identification is 
simplified by the “compactness” arument used in economics by SamuelsonTP

12
PT . 

A compact distribution, short for “distribution with compact support”, has the following 
mathematical property: the moments M[n] become exponentially smaller in relation to the 
second momentTP

13
PT [add references to Samuelson.].   

But there is another twist to the Gaussian distribution. It has the beautiful property that it 
can be entirely characterized by its first two momentsTP

14
PT. All moments M[n] from n 

={3,4,…,∞} are  merely a multiple of M[1] and M[2].  

Thus, knowledge of the mean and variance of the distribution would be sufficient to derive 
higher moments. We will return to this point a little later. (Note tangentially that the 
Gaussian distribution would be the maximum entropy distribution conditional on the 
knowledge of the mean and the variance.) 

From this point on—consider Levi more? Also induction more? These are the things that we 
need to add… 

                                            

TP

12
PTSee Samuelson (1952).  

TP

13
PT A Noncentral moment is defined as dxxxnM n )(][ φ∫Ω≡ . 

TP

14
PT Take a particle W in a two dimensional space W(t). It moves in random increments ΔW over laps of 

time Δt. At times t+Δt, we have W(t+Δt)= W + ΔW + ½ ΔWP

2
P +  1/6 ΔWP

3
P + 1/24 ΔWP

4 
P+  … Now 

taking expectations on both sides: E[W(t+Δt)] = W +M[1]+ M[2]/2 +M[3]]/6+ M[4]//24, etc. Since 
odd moments are 0 and even moments are a multiple of the second moment, by stopping the Taylor 
expansion at M[2] one is capturing most of the information available by the system. 
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Another intuition: as the Gaussian density function for a random variable x is written as a 

scaling of 
( )

2

2

2σ
mx

e
−−

, we can see that the density wanes very rapidly as x increases, as we can 
see in the tapering of the tail of the Gaussian. The interesting implication  is as follows: 
Using basic Bayes’ Theorem, we can compute the conditional probability that, given that (x-

m) exceeds a given 2 σ , that it falls under 3 σ and 4 σ becomes  

∫

∫
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= 99.8% respectively. 

  

 

THE “SEMI-PESSIMISTIC” CASE, TYPE III: “WEIRD” DISTRIBUTION WITH EXISTING 
MOMENTS. 

Consider another case of unbounded distribution:  this time, a linear combination of a 
“regular”  distribution with a “weird” one, with very small probabilities of a very large 
outcome. 

For the sake of concreteness  assume that one is sampling from two Gaussian distributions. 
We have πB1 Bprobability of sampling from a normal NB1B with mean µB1B and standard deviation 
σB1B and  πB2 B= 1- πB1 Bprobability of sampling from a normal NB2B with mean µB2B and standard 
deviation σB2B.  

Assume that NB1B is the "normal" regime as πB1B is high and NB2B the "rare" regime where πB2B is 
low. Assume further that |µB1B|<<|µB2B|, and |σB1B|<<|σB2B|. (add graph.) The density function fB3B 
of this distribution is a linear combination of the density functions N1 and N2. (in the same 
graph, here:.)  

 

Its moment-generating function, MB3B, is also the weighted average of the moment generating 
functions MB1B and MB2B, of the “regular” and “weird” normal distributions, respectively, 
according to the well-known theorem in Feller (1971)TP

15
PT. This in turn means that the 

                                            

TP

15
PT Note that the process known as a “jump process”, i.e., diffusion + Poisson is a special case of a 

mixture.The mean m= πB1 BµB1B + πB2 BµB2B and the standard deviation  



11 

 

 

 

moments themselves (µB3B, σB3B, …) are a linear combination of the moments of the two normal 
distributions.  

While the properties of this generator and the outcomes expected of it are much less 
“stable” (in a sense to be explained later) than either of the previous cases, it is at least the 
case that the mean, variance, and higher moments exist for this generator, Moreover,  this 
distribution over time settles to a Gaussian distribution, albeit at an unknown rate. 

This, however, is not much a of a consolation when  σB2B or µB2B are very large compared to σB1B 
and µB1B, as assumed here. It takes a sample size in inverse proportion to πB2 Bto begin to reach 
the true moments: When πB2 Bis very small, say 1/1000, it takes at least 1000 observations to 
start seeing the contribution of σB2B and mB2B to the total moments.  

THE “PESSIMISTIC CASE:  NO FIXED GENERATOR 

Consider now a case where the generator itself is not fixed, but changes continuously over 
time in an unpredictable way; where the outcome xB1B is the result of a generator GB1B at time 
tB1B, outcome xB2B that of generator GB2B at later time tB2B, and so on.  In this case, there is of 
course no single density function, moment-generating function, or moment can be assigned 
to the changing generator.  

Equivalently, we can say that the outcome behaves as if it is produced by a generator which 
has no moments – no definite mean, infinite variance, and so on.  One such generator is the 
one with moment-generating function MB4B and density function fB4B – the Pareto-Lévy-
Mandelbrot distributionTP

16
PT with parametrization α<1 providing all infinite moments, which is a 

case of the stable distribution "L" Stable (for Lévy-stable).  

 

THE DIFFERENCES BETWEEN THE GENERATORS 

Suppose now that we observe the outcomes xB1B, xB2B, xB3B… xBnB of generators of type (1)-(4) 
above, from the bound dice-throwing to the Pareto-Lévy-Mandelbrot distribution.  What 
could we infer from that data in each case?  To figure this out, there are two steps: first,  we 
need to do is figure out the mathematical relation between the observed moments (E(XBnB), 
Var(XBnB), etc.) and the actual moments of the generator. Then, we need to see what 

                                            

2
2211

2
2

2
22

22
11 )()()( 1 mmmm ππσπσπσ +−+++= . 

 

TP

16
PTSee Samorodnitsky and Taqqu(1994).  It is interesting that the Pareto-Levy-Mandelbrot distribution 

is only known by its characteristic function, not its density which cannot be expressed in closed form 
mathematically, but only as a numerical inversion of the Fourier transform. 
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epistemology tells us about the significance of these relations to out ability to know the 
actual moments. 

 

 THE FIRST AND SECOND CASES. 

In the first and second case, the moments of the generator (e.g., EB1B(X), VarB1B(X), EB2B(X), 
VarB2B(X), and higher-level moments) can be quickly inferred from the observation of the 
actual outcomes.   

For example, the observed first moment – the observed mean E(XBnB) = (xB1B+xB2B+…+xBnB)/n – 
quickly converges to the actual mean EB1B(X) or EB2B(X) as n increases.  Same with the observed 
variance of the sample {xB1B…xBnB}, Var(XBnB), converging to VarB1B(X) or VarB2B(X).  The same is 
also true with higher-level moments.  

Let us illustrate this point—the fast convergence of the observed moments to the actual 
moments—by considering the first moment, or the mean. In the first case (the dice), the 
outcomes are bounded, so that we know that min(X)<x<max(X) for sure.  In the second 
case (the Normal distribution) the outcomes are not bounded, but their probability decreases 
drastically as they vary from the mean.   

That is, pBiB(x)*x0 quickly as x increases to extreme values both in the case of the first and 
the second generator (that is, for i=1,2).  In the first case this is due to the fact that pB1B(x)=0 
for x<min(X) or x>max(X); in the second, because pB2B(x) decreases much faster than the 
deviation of x from the mean.   

This means that the effect of extreme values on the mean of the generator, EBiB(X) = 
ΣBxBx*pBiB(x), is negligible in both the bounded case (i=1) and the Normal case (i=2).  That is, 
ΣBxBx*pBiB(x) ~ ΣBx not an extreme valueBx*pBiB(x) for both generators.   

Consider now the data we actually observe.  Even if the low-probability extreme values of 
the generator (if such exist) are not observed at all in the outcomes xB1B, xB2B… xBnB, the 
“experimental” E(XBnB) = (xB1B+xB2B+…xBnB)/n is still converging towards ΣBx not an extreme valueBx*pBiB(x).  
This, as we said, will not differ much from the actual EB1B(X) or EB2B(X).  One does not, in other 
words, need to wait until a rare extreme event occurs, even if the possibility of such events 
exists, in order to get a reasonable estimate of the real EB1B(X) or EB2B(X) from the experimental 
E(XBnB).   

For similar reasons, Var(XBnB) will converge quickly to VarB1B(X) or VarB2B(X), and the same for 
higher-level moments, even if xB1B, xB2B, … xBnB does not include any of the extreme values that 
could occur – if any. 
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THE “SEMI-PESSIMISTIC” CASE 

Suppose now that the generator which generated our data – outcomes xB1B, xB2B,… xBnB – is of 
the third type, the “semi-pessimistic” case of a linear combination between a Normal and 
Poisson distribution. 

In this case, the extreme values of the generator are not negligible for the calculations of the 
generator’s moment.  That is since, while pB3B(x) 0 as x deviates greatly from the mean, it 
does not do so “fast enough” to make extreme values negligible.  That is, pB3B(x)*x does not 
 0 as x becomes extreme.  

In such situations, EB3B(X) = ΣBxBpB3B(x)*x ≠ ΣBx not extreme valueBpB3B(x)*x.  Therefore, as long as the 
rare extreme events do not occur, the “experimental” E(XBnB) is converging towards  ΣBx not 

extreme valueBpB3B(x)*x - which might be very different from EB3B(X) = ΣBxBpB3B(x)*x.   

In other words, the rare, extreme events need to actually occur before E(XBnB) will be close to 
EB3B(X) (if then).  And similarly for Var(XBnB) vs. VarB3B(X) and the higher-level moments. 

This is seen by the fact that in such generators, the conversion is much slower. (add formula 
for the convergence in the first moment and second moment). 

Furthermore, until extreme “black swan” results actually occur, the observed outcomes of 
the second (Normal) generator would be indistinguishable from the results of the third 
(Normal + Poisson) generator.  We shall consider the implications of this later. 

 THE “PESSIMISTIC” CASE 

In the “pessimistic” case, things can be intractable.  It is not that it is takes time for the 
experimental moments E(XBnB), Var(XBnB), etc. to converge to the “true” EB4B(X), VarB4B(X), etc.  In 
this case, these moments simply do not exist.  This means, of course, that no amount of 
observation whatsoever will give us E(XBnB), Var(XBnB), or higher-level moments that are close to 
the “true” values of the moments, since no true values exist. 

 

THE PROBLEM OF INDUCTIVE INFERENCE AND ITS RELATION TO THE 
MATHEMATICAL RELATIONS DISCUSSED ABOVE 

So far, we have just described four generators and saw the mathematical relation they imply 
between the value of the estimated moments and the actual moments (if they exist).   

We now need to see how these properties affect the original question we considered: 
namely, under what circumstances can we use the data of the previous outcomes of the 
generator to establish the type of the generator and its parameters, and thus be able to 
predict the risk of future outcomes. 
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It should be emphasized that while these two problems – the mathematical relation between 
the generator’s true moments and the observed moments, on the one hand, and the ability 
to predict the future outcomes of the generator are closely related, they are by no means 
identical.  The first one is a purely mathematical problem.  The second is an epistemological 
problem.  

One can never conclude much about the future solely from a small specific set of outcomes, 
our “experimental data”.  In the modern literatureTP

17
PT, a corpus of knowledge, suggesting 

availability of background information is always imperative.  

For example, one cannot tell, from a million observations of a coin toss alone, that the coin 
has a certain probability of landing “heads” on the next toss.  There is nothing “in the data” 
itself that excludes, for example, the possibility that the coin will land neither “heads” nor 
“tails” the next time, but will explode like a nuclear bomb.  Despite the close mathematical 
relation between the observed and actual moments, unless we have the right “background 
information”, we will not be able to make any epistemological conclusion from the data to 
the future behavior of the generator. The reason such outcomes as “will explode like a 
nuclear bomb” are excluded is that, in most case, we have the right kind of “background 
information” to exclude it – e.g., our knowledge of physics.   

On the other hand, even if the generator is of the “pessimistic” Pareto-Lévy-Mandelbrot type 
above, the lack of mathematical relation between the observed moments and the real 
moments might not – in theory! – exclude one from making an epistemological conclusion 
about the future outcomes of the generator.  If by some miracle, for example, we have an 
access to an angel that whispers in our ear the next outcome of the generator before it 
occurs, then part of our “background information” simply includes the generator’s outcome, 
and we could tell what the outcomes would be.  

However, such cases are usually of a fantastic nature—in most cases we deal with, as seen 
below, the mathematical information is necessary, but not sufficient, to reach the 
epistemological conclusions we are interested in. 

 THE IMPLIED BACKGROUND INFORMATION AND OUR CLAIMS 

As we said we are interested here in the epistemological problem given a specific type of 
background information, which is the situation in practice when risk managers need to “show 
their stuff”.  We assume that the background information is such that:   

Outcomes are created by some random generator; 

That this random generator will continue to produce them in the future;  

One does not have any independent way to estimate either the type of generator or its 
parameters except from the data of the previous outcomes, and that furthermore  

                                            

TP

17
PTSee for example Levi(1980), Kyburg(1974).   
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The generator can be any one of the four different types of exclusive and exhaustive 
generators discussed above. 

 

The first three assumptions are not controversial (where is this information coming from? 
Why is it agreed? Add references? E.).  The fourth one is 

Our epistemological question is:  if the background information is as above, what if anything 
can we conclude about the moments of the generator (and, hence, about its future 
behavior) from 1). the observed past behavior of the generator, and 2). This background 
information? Our practical question is: when is it the case that, indeed, the generator can be 
of all four types, or at least of the “pessimistic” type, type 3 or 4?   

We claim that: 

 1) If the generator can be or type 3 or 4 (“semi-pessimistic” or “pessimistic”), that is 
enough to invalidate our ability to conclude much from its past behavior to its future 
behavior; in particular, it makes it impossible for us to assign any specific probability to 
future outcomes, which makes the situation one of uncertainty, as claimed in the 
introduction above. 

2) It is precisely in situations dealt with by risk managers where the generator can be of type 
3 or 4. 

  

THE PROBLEM OF INDUCTIVE INFERENCE:  THE FIRST PART 

Let us begin, then, with the first part of the problem, the “if-then” part:  namely, under what 
circumstances we can (or cannot) say something about the moments of the the generator if 
we know (or do not know) the background something about what the generator is, or what 
type it could be.  

There are two possibilities. It might be that certain information about the moments is a 
deductive consequence of what I already know about it. For example, if I know that a 
generator’s outcomes are bound between the values a and b, I know that the first moment 
is also so bound. This is not a matter of choice or decision: to be logically consistent, I must 
accept all such consequences the background information implies about the momentsTP

18
PT.  

More complicated is the case of induction. Even when (as we always assume) all the 
deductive consequences of the background information are known, it might be that no 
specific value for the moments emerges. In that case, we are not forced to settle on a 
specific value for them. Nevertheless, we might conclude that under the circumstances, we 

                                            

TP

18
PT See also the distinction between “doxastic commitment” and “doxastic performance” in the section 

about induction and deduction, below. 
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are inductively justified in assigning the mean of the generator a certain value (say, “3.5” in 
the “fair die” case), and similarly for higher moments. 

We discuss induction more specifically below, in a separate part. But before we begin this 
section, a short summary is necessary.  

As Peirce showed, this is really a epistemic decision problem. I am given background 
information about the generator (“it looks like a die of some sort is tossed”) and the previous 
outcomes (“the outcomes were 4, 4, 3, 2, 1”). I need to decide whether adding a new 
conclusion about the generator’s moments to my beliefs based on this data is justified (say, 
“the die is a fair die”, or more formally “the die’s first moment is 3.5”). 

To solve the decision problem, as in all decisions problems, one needs to consider the goal 
(or goals) one tries to achieve, and the options one can choose from.  To choose correctly 
means to choose the option that best achieves one’s goals. Decision-making goals can be 
anything from winning a nuclear war to choosing a good restaurant The goals of inductive 
inference is (as James showed, below) to seek new information while at the same time 
avoiding error. Similarly, the available options can be anything from launching a Trident II 
missile to driving to the restaurant.. In inductive inference, the options are adding new 
claims to one’s beliefs—in this case, claims about the value of a random generator’s 
moments. 

These two goals are in tension: the more information I accept, the more likely it is that one 
will mistakenly include error. The question is, what new claims give me the most information 
for the least risk if I add them. The result of the inductive inference—the solution of the 
decision problem—is adding to one’s beliefs the claim that best balances these goals. Adding 
this claim is the inductive inference justified under the circumstances. 

Note that the null claim—“add no new information”—is always available. If the optimal 
option is the null option, it means that the justified inductive inference is no inference. In our 
case it would mean that we are not justified in concluding anything about the generator’s 
moments from our background information and past outcomes. As we shall see, this is often 
the case. 

Note, further, that mere high probability, e.g. low risk of error, is not itself good enough for 
acceptance. Consider a lottery with a million tickets: the probability or each ticket winning is 
1/1,000,000; but if we accept that this low probability, in itself, is enough to conclude that 
ticket n will not win, we reach the absurd conclusion that no ticket will win.  

In what follows, we need to formalize and quantify the decision situation faced by 
the agent. For this we use the system developed by Levi. Other formalizations of 
epistemic decision-making in inquiry exist; in fact, one of the authors (Pilpel) is 
investigating the differences between these systems. But in the cases of risk 
management described below, all of them will recommend the same (pessimistic) 
conclusion.  
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TYPE #1 AND #2 GENERATORS 

Suppose that an angel came to us and told us the following:  “the phenomena which 
you measured so far, with results xB1B, xB2B, … xBnB, is produced by a generator which is 
bound (type 1 above) between a and b, or which gives a normal distribution (type 2 
above). However, I will not tell you what the mean, variance, or higher moments 
are; this you need to figure out from that data.”  Could we do it?    

TYPE 1 GENERATORS: FORMAL TREATMENT 

To answer, let us put things more formally, using Levi’s notation (Levi, 1980, and 
also below). To simplify things, let us fix a and b as 1 and 6, and first consider a 
bounded generator (Type 1) with a finite number of outcomes—say a tossed die with 
outcomes {1, 2, 3, 4, 5, 6}. John, at time tB0B, has to make a decision about the 
properties of this random generator.  What can we say about this situation, 
epistemically? 
 

THE CORPUS OF KNOWLEDGE: BACKGROUND INFORMATION AND 
EXPERIMENTAL DATA 

First of all, John has a corpus of knowledge (or belief), KBJohn,t0B. It includes the following 
information: 

Background information John knows about the generator. As the angel said to John, 
KBJohn,toB includes: 
The outcomes of the dice throws are governed by a random generator defined by a 
probability function X:{1,2,3,4,5,6}[0,1].  

The outcomes of the generators are always one of the set  {1,2,3,4,5,6}. 

The generator’s mean (E(X)), variance (Var(X)), and higher-level moments are fixed, both in 
the past and in the future.  

John knows the laws of statistics, methods of statistical inference, and so on, e.g., the 
central limit theorem, etc. 

John’s corpus of knowledge KBJohn,t0B also includes the outcomes of the previous trials up to 
time tB0B: 

The first toss of the die had outcome xB1B∈{1,2,3,4,5,6}. 

The second toss of the die had outcome xB2B∈{1,2,3,4,5,6}. 
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… 

…. 

n) The nth toss of the die (the last one before time tB0B) was xBnB∈{1,2,3,4,5,6}. 

We also assume something else of significant importance: that n is large enough for us to 
use the normal approximation for E(XBnB). We shall see the importance of this later. 

The result of 1-n above and John’s knowledge of statistics is that, of course, John has 
estimates of the first, second, and higher moments in his corpus: 

The estimated first moment of X given the first n tosses (E(XBnB)) is (∑BiBxBiB)/n. Note that this 
itself is a random variable, dependant on both the properties of X and on n. 

The estimated second moment given the first n tosses (Estimated variance, or Var(XBnB)) is 
the square of the sample’s standard error, or (∑BiB(xBiB-E(XBnB))P

2
P)/(n-1). 

… and so on for higher-level moments. 

Finally, John’s corpus of belief includes (by definition, as seen below) all the deductive 
consequences of the above information. In particular, that 1≤E(X)≤6, 0≤Var(X)≤25 (=(6-
1)P

2
P) (actually less, but we can afford to be generous here), etc. 

However, John’s corpus does not limit where E(X) can be deductively any more than that. It 
is not logically follow from the outcomes and the background information that E(X) is more 
specific than [1,6]. 

 

John is engaged, at time tB0B, in solving a decision problem: given the information 
above in KBJohn,t0B, can he give a reliable estimate of the moments of the generator X—
and thus, of its future behavior? To simplify, once more, we shall consider only the 
case of John estimating the first moment, E(X).  
 

THE DECISION PROBLEM: THE OPTIONS 

To repeat, giving a reliable estimate of E(X) is another name for saying that John is 
justified to infer that E(X) is of a certain value—that it is a legitimate inductive 
inference. This is a decision problem; we need to first consider what options for 
inductive inference exist—that is, between what estimates of E(X) John can choose; 
then, to decide which one (if any) of those John should choose. 

What are the options available? This depends both on what is deductively excluded 
by KBJohn,t0B and the goals that interest John. In this case, we know that: 
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KBJohn,t0B⊢1≤E(X)≤6. Whatever value John chooses as his estimate of E(X), it must be 
between 1 and 6 on pain of logical inconsistency.  
From the statistics in KBJohn,t0B one knows that the estimate “E(X)=E(XBnB)” is the only one that is 
free from an built-in bias.  

 

Now, we can limit the number of options John considers accepting or rejecting to a finite 
number (even to two). For a fixed εB0B, we can consider the two options as whether |E(X)-
E(XBnB)|<εB0B or not (HB0B). On this view, there are four options altogether: to accept that E(X) is 
at most εB0B from the observed E(XBnB), to accept that E(X) is εB0B or more from the observed 
E(XBnB), to accept both (which means that John decides to add information to KBJohn,t0B that 
makes his beliefs inconsistent, by adding HB0B∧~HB0B) and to accept neither (that is, to add 
nothing to KBJohn,t0B, by “adding” the tautology HB0B∨~HB0B)   

However, there is no need to a priori limit the number of possible options. There is a natural 
set of potential basic options, mutually exclusive and exhaustive (as they must be—see Levi, 
1980), that are the most specific possible: namely the set {UBxB = BdefB “E(X)=x”| 1≤x≤6}.  

In this case, John has a total number of 2P

א
P options: those that are defined by any sort of 

(measurable) subset of [1,6]. For example, John might decide that the strongest claim that 
he accepts is that E(X) is between ½ and 1 or between 4 and 5; that is, John accepts the 
infinite disjunction (∨ B0.5<j<1BUBjB)∨(∨ B4<j<5BUBjB) as true, but does not accept anything more 
specific. Note that the previous “basic” option HB0B is a non-basic one, the disjunction ∨ BE(Xn)-

ε0<j<E(Xn)+ε0BUBjB.  

In particular, John still has the weakest option—accept only the disjunction ∨ B1≤j≤6BUBjB, that is, 
that 1≤E(X)≤6, which is already in KBJohn,t0B and therefore a null addition; and there is a single 
strongest option—accepting the disjunction ∨ B∅B, that is, to accept that none of the basic 
hypotheses UBjB are true. This means to accept that E(X)∉[1,6], in contradiction with 
information already in KBJohn,t0B that it is; that is, the strongest option is to add a contradiction. 

 

THE DECISION PROBLEM: RISK OF ERROR 

The next issue to consider in the decision problem is the risk of error by accepting any of the 
options, and, in particular, the basic options. The risk of error, from the agent’s point of 
view, is the probability that it is wrong.  

Since we are dealing with the infinite case, we must deal not with probability itself (for every 
basic option, p(UBjB) = p(E(X)= exactly j) is 0), but with the density function, f, which in turn 
determines the probability for any measurable set. Can John estimate this density function? 
The laws of statistics tell us that John can do so.  
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UThe calculations themselves can be found in any statistics textbook. Here is a short sketch: 
for a “large enough” n (n>30), the random variable XUPU

*
UPBUnUBU =UBUdefUBU (∑UBUj=1 to nUBUxUBUiUBU)/n behaves roughly 

like a normal variable (due to the central limit theorem) with mean E(X) and standard 
deviation of UσBXB/√n. We do not know what σBXB itself is, of course (the generator’s moments 
are hidden from us) but, since σBXB is bounded from above—if by nothing else, then by sqr((6-
1)P

2
P)=5, in this case—there is a known upper limit to the standard deviation of XP

*
PBnB is for 

every n. So, for every n, the laws of statistics tell John that he can assume that XBnB’s density 
function is roughly that of a normal random variable with a mean E(X) and (maximal) 
standard deviation of (in this case) 5/(√n).  

(For smaller n, one needs to use Gossett’s “Student-t” distribution, but we can assume n is 
large enough. Also that the normal approximation of XP

*
PBnB is unbounded—it can go to, say, -

1000 or +1,000,000—while the “real” XP

*
PBnB is the observed average of n die tosses, and must 

be bound between 1 and 6; but, again, for a “large enough” n the tails will be so close to 0 
as to make no difference. Finally,  one can estimate σBXB by using s = sqr[(∑Bj=1 to nB(xBjB-
E(XBnB))P

2
P/(n-1)], the sample’s standard error, which would usually be much smaller than 5; 

but we can afford to take the “worse case scenario” here.)  

What, then, are the allowable probability functions, QBJohn,t0B, John can consider (for a given n) 
as possibly representing the actual density function of the probability of the real E(X) being 
at a certain point around the observed E(XBnB)? It is a family of normal distributions with mean 
E(XBnB) and maximal variance 5/√n. So, the density functions are:  

Allowable density functions for John at time tB0B: QBJohn,t0B = B  B{fBvB≡N(E(XBnB),v)| 0<v<5/√n}.  

Note that the agent can use the laws of statistics to reach conclusions about the probabilities 
partially because the original random variable X describing the generator does not change 
wth time. Therefore, the risk of error John takes (given a fixed density function f and n) if 
John accepts the infinite disjunction (∨ B0.5<j<1BUBjB)∨(∨ B4<j<5BUBjB) as true (that is, adds it to KBJohn,t0B) 
but does not accept anything more specific, is 1-(∫B[0.5,1]B f(x)dx+∫B[3,4]Bf(x)dx), that is, 1-the 
probability of it being the case that E(X) is in that range.  

 

THE DECISION PROBLEM: INFORMATIONAL VALUE 

Now we come to informational value. What informational value should be assigned to every 
UBiB? 

According to it (Levi 1980) the informational value of an hypothesis, Cont(H), is inversely 
correlated with a probability function, M(H): the higher the “probability” of an hypothesis, 
the less information it carries. This must be so, if we want certain basic properties of 
information value to hold: say, that the informational value of a tautology is the minimal 
possible one, or that the Cont(A∨B) ≤ Cont(A), Cont(B) ≤  Cont(A∧B).  

Note that: 
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M is not the same as the probability function that the agent assigns to the hypothesis being 
true, unlike what Popper (1950) and others believed. On the view advocated by Peirce, 
James, and Levi, informational value is not merely a way to say that something is 
improbable; probability and informational value are distinct characteristics.  

The inverse proportion between M(H) and  Cont(H) can take several forms: say, 
Cont(H)=BdefB1/M(H), Cont(H)=BdefB-(log(M(H))), etc. Levi prefers the simple Cont(H)=1-M(H), 
for reasons not crucial to this discussion (for the record, in this way his version of 
information content mimics in certain respects Savage’s “degrees of surprise”, see Savage 
(1953), Levi (1980).)  

 

There is here a natural suggestion: that every UBiB have an equal informational value: it is 
precisely as informative, or as specific, to say that E(X)_is 0.453 as it is to say that it is 
0.991.  That means that the M-function, as well, must be “the same” for every UBiB. Since we 
are dealing with the infinite case, any M-function would give probability 0 to every UBiB, so we 
need to look at the density function: we wish the density function m of the M-function to be 
the constant one. In this case, we have m≡0.2 over [1,6].  

On this view, the informational value of every hypotheses H is 1-M(H), that is, 1-0.2*(H’s 
measure). For example, if John accepts the infinite disjunction H=(∨ B0.5<j<1BUBjB)∨(∨ B4<j<5BUBjB) as 
true (that is, adds it to KBJohn,t0B) but does not accept anything more specific, John gains 
informational value of Cont(H) = 1-M(H) = 1-(∫B[0.5,1]B0.2dx+∫B[3,4]B0.2dx).  

To illustrate, here is a graph of the m-function and a few of the potential density functions: 
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Figure 1: The agent's m-- and p-functions 

 

THE DECISION PROBLEM: THE OPTIMAL INDUCTIVE STRATEGY 

 

THE DECISION PROBLEM: STAGE 1: THE FORMULAS 

As always, we follow Levi(1980). Levi recommends to accept an hypothesis where the 
information value (defined by Cont(H), etc.) is big enough to justify the risk of error (defined 
by p(H), etc.)  

How does one determine what is a “small enough” risk of error or a “large enough” 
informational value? Levi (1980) concludes that the way to go is as follows: 

Rejection Rule: if UBiB is a basic option, p(UBiB) is the credal probability (e.g., the probability the 
agent assigns to UBiB being true) of UBiB, and M(UBiB) the probability function determining its 
informational value Cont(UBiB) =BdefB 1-M(UBiB), the agent should reject UBiB (e.g., add ~UBiB to their 
corpus of knowledge) if and only if  p(UBiB)<qM(UBiB), where 0<q<1 is the agent’s “boldness 
index”. 

Let us consider this for a moment. To accept hypothesis UBiB is the same thing as rejecting 
~UBiB; and Cont(UBiB)=1-M(UBiB)=M(~UBiB). For a fixed p function and fixed q, the higher the 
informational value Cont(UBiB), the higher M(~UBiB), and the more likely that ~UBiB will be 
rejected—that is, UBiB accepted. That is, the higher the informational value of UBiB, then—ceteris 
paribus—the more likely it is to be accepted. 

Similarly, On the other hand, for a fixed Cont(UBiB) and q, the higher p(UBiB), the lower p(~UBiB) = 
1-p(UBiB). This means that it is more likely that p(~UBiB) will be lower than qM(~UBiB); that is, ~UBiB 
will be rejected, or UBiB accepted. The more probable UBiB, the more likely it is (ceteris paribus) 
to be accepted. 

Now, what is q? This depends on the agent and the situation. For a fixed p and M functions, 
the higher q is, the more options are rejected, and the smaller (and more specific) the 
number of remaining options. The agent is therefore bolder in accepting the risk of error for 
information. The lower q is, the less options are rejected, and the larger (and less specific) 
the number of remaining options.  

There is no a priori reason to fix q at a specific number. However, as Levi shows, q should 
never be 0 (let alone below), since this would mean the agent might hesitate and not accept 
options even if they carry no risk of error (e.g., they have probability =1). And q should 
never be 1 (or above), since that would mean the agent might accept to their beliefs options 
that carry a risk of error for sure (e.g., have probability = 0). 

In the infinite case, as in here, one cannot use the probability functions themselves, since for 
every basic option UBjB, p(UBjB) = M(UBjB) = 0, and therefore for every q the inequality does not 
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hold (it is 0<0). The natural extrapolation (see also Levi, 1980, esp. 5.10, 5.11) is, in this 
case, to consider the density functions: to reject UBjB for 1≤j≤6 if and only if f(j)<qm(j), that 
is, if and only if f(j)<0.2q. 

This means that, for a specific q and f, there is a “cutoff point εB0B, where f(E(XBnB)-εB0B) = 
f(E(XBnB)+εB0B) = 0.2q; John  should rejects the tails re the value of f is below 0.2q, that is, the 
agent adds the information that the value of E(X) is between E(XBnB)-εB0B to E(XBnB)+εB0B to KBJohn,t0B.  

 

THE DECISION PROBLEM, STAGE 2: E-ADMISSIBLITY AND SUSPENDING JUDGMENT 

Things, however are not that simple, for two reasons: first, John has more than one possible 
density function, and they do not always give the same recommendation. Second, once it is 
decided by John what he should add to his belief given a specific density function, the 
question is: which one of those to actually recommend? 

An option that is recommended by a specific probability function the agent considers 
legitimate is called by Levi an E-admissible option. In this case, the set of E-admissible 
options for John are: 

{Add to KBJohn,t0B that (E(XBnB)-ε(f)≤E(X)≤E(XBnB)+ε(f)| for every f∈QBJohn,t0B, ε(f)=Bdef Bdistance from 
E(XBnB) where f(ε(f))=0.2q} 

It is easy to see that this set is a set of stronger and stronger options, depending on what 
the variance of the allowable density function is, since the set of density functions is the 
normal density functions with mean E(XBnB) and standard deviation from 0 to 5/√n, as said 
above. This means that if f is a “spread out” function (with a relatively high variance), ε(f) is 
relatively large and John only accepts, given that f, that the true value of E(X) is between 
relatively far apart E(XBnB)-ε(f) and E(XBnB)+ε(f). if f is a “concentrated” function (with a low 
variance), ε(f) is correspondingly smaller and John accepts a stronger claim—that the real 
value of E(X) is within a narrower range.  

So much for the E-admissible options. Which one to choose? Levi suggests (Levi, 1980) a 
rule for ties: 

Rule for ties: If an agent has two E-admissible options EB1B and EB2B, and it is reasonable to 
suspend judgment between them (accept EB1B∨EB2B)—that is, in particular, that EB1B∨EB2B is itself E-
admissible—then one should choose the E-admissible EB1B∨EB2B over either the E-admissible EB1B 
or the E-admissible EB2B. 

In this case, all the possible options are arranged by logical strength from the weakest 
(accept only that E(X) is between E(XBnB)-ε to E(XBnB)+ε when ε is when the density function 
N(E(XBnB,5/√n)=0.2q) to the strongest (accept that E(XBnB)=E(X) exactly; that is, to consider 
the limit case where the normal distribution has variance 0). Of any two options, one implies 
the other, so that their disjunction is simply the weaker option. The rule for tie tells us to 
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take the total disjunction—in this case, the weakest possibility. So, in sum, John accepts 
that: 

 

John’s Acceptance, stage 1: Adds to KBJohn,t0B the fact that E(XBnB) is between E(XBnB)-ε and 
E(XBnB)+ε when ε is when the density function N(E(XBnB,5/√n)=0.2q. 

 

THE DECISION PROBLEM, STAGE 3: ITERATION 

However, we are still not done. Now that John accepted certain claims to be true, says Levi, 
John needs to iterate the inductive inference. John’s new K, KBJohn,t1B, is the deductive closure 
of KBJohn,t0B and the disjunction ∨Bx|E(Xn)-ε0≤x≤E(Xn)+ε0B(“E(X)=x”). Or, in Levi’s symbolism, John 
expanded his corpus to a larger one, holding more beliefs. In Levi’s symbolism, if HB1B = Bdef 

B∨Bx|E(Xn)-ε0≤x≤E(Xn)+ε0B(“E(X)=x”): 

 

KBJohn,t1B = KBJohn,t0PB

+
PBH1B. 

 

John’s probability functions, in QBJohn,t0B, also change:  also change: they are now the set of 
conditional probabilities, given that John added the disjunction that E(X) is between E(XBnB)-ε 
and E(XBnB)+ε to his beliefs. (Levi calls this the conditionalization commitment. See Levi, 
1980.) That is, John’s new probability functions at time tB1B, is: 

 

QBJohn,t1B = {p| p(x) = q(x|H1), for every q∈QBJohn,t0B} 

 

The informational value function also changes. It becomes determined by the conditional, 
new M-function, which is 0 outside [E(XBnB)-εB0B, E(XBnB)+εB0B] and 1/2εB0B inside this interval.  

 John now has a stage 2 decision problem: which, if any, of the options UBxB= “E(X)=x”, for 
x∈[E(XBnB)-εB0B, E(XBnB)+εB0B], with these new probability and content functions, should he reject?  

As before, one does the calculations and sees that one should reject just those UBxB’s where 
the weakest conditional density function, N(E(XBnB), 5/√n) given that x is between E(XBnB)-ε and 
E(XBnB)+ε, is below qm(x)—that is, q(1/2εB0B).  

Possibly some more hypotheses will get rejected. If there are some, then John needs 
to yet again add more information to his beliefs—add to KBJohn,t1B the fact that E(X) is 
not farther away from E(XBnB) thant some ε’, (0<ε’<ε). Then, John needs once more 
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iterate—conditionalize QBJohn,t2B based on QBJohn,t1B given the new rejections, make M 
defined by the new m≡1/2ε’, and so on.  
This process continues indefinitely. John solves a series of decision problems given KBJohn, t0B, 
KBJohn, t1B, KBJohn, t2B, … each saying that E(X) is at most ε, ε’, ε’’, ε’’’ … away from E(XBnB), with the 
conditional QBJohn, t0B, QBJohn, t1B, QBJohn,t2B, …, each based on the previous one and the new 
information added, with the new m density function being 1/5 (the original one), 1/2ε, 1/2ε’, 
1/2ε’’, 1/2ε’’’ …, etc. 

It can be shown that eventuall—and perhaps even the first time—John will reach a certain 
KBJohn,t*B, QBJohn,t*B, with the strongest claim in KBJohn,t*B being that E(X) is at most 0<εP

*
P away from 

E(XBnB), m being 1/2εP

*
P, where the recommendation is not to reject any more hypotheses. 

John, as it were, rejected all the he could reasonably reject.  

 

JOHN’S FINAL DECISION 

The final recommendation—the strongest—is: 

John’s Acceptance, stage 1: Adds to KBJohn,t0B the fact that E(XBnB) is between E(XBnB)-εP

*
P and 

E(XBnB)+εP

*
P when 0<εP

*
P≤ε, ε being the value where  John’s original density function, the 

(unconditional) N(E(XBnB),5/√n)=0.2q. 

 

DISCUSSION 

The result of the inductive decision problem is “John’s acceptance”, above. That is, induction 
recommends that John, in this situation, and for a given n and q, accept that E(X) is in the 
range described by “John’s Final Decision”. 

In practice, this means two things: 

Unless q is very small, then for any n that is not too small (say, n≈30 or so, or higher, as we 
assume) the range that John accepts as possible value for E(X) is relatively small, even if 
one uses the maximum possible estimation of XP

*
PBnB’s standard deviation, that is, 5/√n. 

If one uses the standard estimation of XP

*
PBnB’s standard deviation (the standard error), then ε, 

even after only one iteration, will be even smaller, since the weakest (most spread out) 
density function John considers in the first case will be N(E(XBnB), s/√n), with s the standard 
error, not N(EXBnB), 5/√n), and s<5—and thus N(E(XBnB), s/√n) would reach 0.2q faster (closer 
to E(XBnB). 

Successive iterations of the decision problem might lead the agent to reject even more 
hypotheses, eventually settling on the claim that E(X) is in [E(XBnB)-εP

*
P, E(XBnB)+εP

*
P], with 

0<εP

*
P≤ε. 
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(2) and (3), in this case, are almost unnecessary, however. For a reasonably large n—one 
large enough to use the normal approximation for XP

*
PBnB—even doing only one iteration of the 

decision process and using the maximal possible size of XP

*
PBnB’s standard deviation would 

usually significantly limit what is accepted.  

In short, So when one has a type 1 generator, John can tell, pretty quickly, quite a bit about 
the value of the generator’s moment, E(X). John is justified in inductively accepting that it is 
within a range, ε, that is small to begin with in most circumstances (as 1 above says) and 
gets smaller quickly as the number of observations increases.  

Note, also, an important point. First, obviously information about the previous outcomes of 
the generator is essential for the agent to reach the conclusion. But the law of statistics 
could only be used because we have background information about the type of generator we 
have here—a “well-behaved” one.  

TYPE 2 GENERATORS: NORMAL DISTRIBUTION 

BACKGROUND INFORMATION  

Type 2 generators are similar to type 1 generators, as we shall see, with a few 
difference. Again, to fix the discussion, let us presume that the generator is normal, 
with (actual) moments E(X), Var(X), etc. As before, let us assume that John is trying 
to estimate the first moment, or what E(X) is. 
The background information is very similar to the one with the case of the bounded 
distribution, of course with the change that John knows that the generator is normal, not 
bounded. In particular, John knows that E(X) and Var(X) are fixed and will remain so in the 
future, and the laws of statistics. John also knows, due to these laws, that the (same) 
estimates (E(XBnB), Var(XBnB)) are the only ones of the generator’s moments that do not have a 
built-in bias. 

When it comes to the data, John knows what the past outcomes (xB1B, … xBnB) of the generator 
were. As before, let us consider the first moment E(X) and John’s estimation of it.  

 

DIFFERENCES FROM BOUNDED DISTRIBUTION—AND WHY IT DOESN’T MATTER 
IN THIS CASE 

There are two things that can ruin it for John. In the bounded case, there were no extreme 
events, first, and σBXB was bounded from above by a known quantity. In the normal case, it 
could be that an extreme event would be observed in xB1B, … xBnB, and significantly “throw off” 
E(XBnB). Or, if σBXB is extremely large, it might take a very large n to get E(XBnB) to converge to 
E(X). In both cases, even for a large n, E(XBnB) could still be significantly different from E(X). 
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Consider, however, what we are trying to achieve in the first place. We are not claiming that 
all “well behaved” generators—e.g., all normal distributions—can be easily “worked on” in 
practice, no matter what their properties or what the outcomes in the past happened to be. 
If the normal distribution has a very large variance, it will indeed take a lot of time for that 
pattern to emerge. If an extreme 10-σ event dis in fact occur, the estimate E(XBnB) will be off 
from E(X) for a while.  

But such occurrences are observable: John will see them occurring in the outcomes, 
and know to be care in reaching conclusions about the future. Our problem is not 
with the “bad” generators (large σBXB) or “bad” outcomes (10-σ events) that wear their 
“badness” on their sleeves, that is, in the outcomes already observed. We are 
concerned here with exactly the opposite: what we can say about a generator when 
it is assumed that the outcomes do look good—that is, when σBXB is small and no 
extreme events occured in the past.  
So we can assume that the outcomes do “look good”: that σBXB is relatively small and that no 
10-σ events occurred. We want to know: given these outcomes, what can the agent deduce, 
if anything, about the qualities of the generator? In this case, quite a lot.  

As above, the random variable XP

*
PBnB behaves normally, with Urandom variable XUPU

*
UPBUnUBU =UBUdefUBU (∑UBUj=1 to 

nUBUxUBUiUBU)/n behaves roughly like a normal variable (due to the central limit theorem) with mean 
E(X) and standard deviation of UσBXB/√n. We do not know what σBXB itself is, of course (the 
generator’s moments are hidden from us) but we can estimate it, since one can estimate σBXB 
by using s = sqr[(∑Bj=1 to nB(xBjB-E(XBnB))P

2
P/(n-1)], the sample’s standard error. This means that we 

can assume (presuming, again, that n is “large enough” as above) that the density function 
of XP

*
PBnB is N(E(X), sqr[(∑Bj=1 to nB(xBjB-E(XBnB))P

2
P/(n-1)]/√n). This is a Normal distribution that, as n 

increases, becomes more and more “centralized” since its σ0 as fast as 1/√n.  

In this case, then, John has one probability function that determines how probable it is that 
the actual E(X) is within a certain range of the observed E(XBnB): 

 

John’s density function, f: N(EBnB(X), sqr[(∑Bj=1 to nB(xBjB-E(XBnB))P

2
P/(n-1)]/√n).  

 

(Of course, we could have used this technique to minimize the set of allowable probability 
functions in the bounded case, as well. But we deliberately did not, to show that even if we 
do allow many probability functions that create a “worst-case scenario” in the bounded 
situation, John can still tell us much about the generator’s moments. It also gave us a way to 
illustrate the rule for ties and E-admissability and to the iteration process, which will be 
important later on.) 

 

INFORMATIONAL VALUE: SOME COMPLICATIONS 
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Assigning an M-function (and therefore an informational value function) is a bit more 
complicated this time. M’s density function cannot be the constant function m whose integral 
over the possible range—(-∞, +∞)—is equally to 1, since there is no such function (the 
integral is 0 for m≡0 and diverges otherwise). There is, simply put, no way for an agent to 
assign “equal informational value” to “E(X)=x” for every x∈ℝ and still have the informational 
value be based on a probability function. 

What, then, should M be? There are several possibilities. The one we use—due to 
our concern with “extreme events”—is as follows. Consider some large LB0B, and the 
range [E(XBnB)-LB0B, E(XBnB)+LB0B]. There is an infinite number of hypotheses of the value of 
E(X) within this range (namely, UBxB=BdefB “E(X)=x” for every x∈[E(XBnB)-LB0B, E(XBnB)+LB0B], 
and two additional hypothesis: UP

-
P=BdefB “E(X)<E(XBnB)-LB0B”, and UP

+
P=BdefB “E(XBnB)+LB0B<E(X)”. 

The M-function that determines the content function will give both of these 
hytpotheses some the hypothesis UP

*
P some probability, pP

-
P and pP

+
P; we can assume 

they are the same, pB0B.  
We can be careful and assume that, first, LB0B is large (relative to the standard error of the 
sample, s)—say, 10s in length; the reason is that we want these hypotheses to represent 
extreme possible values of E(X). We also assume that UP

-
P and UP

+
P are very informative—that 

is, that pB0B is very small. Within [E(XBnB)-LB0B, E(XBnB)+LB0B], we assume that M is determined by the 
usual, fixed density function m; only this time its integral of the 2LB0B integral isn’t 1, but 1-
spB0B. So John’s M-function is defined as: 

 

M(UP

+
P) = M(UP

-
P) =  pB0B; m≡(1-2pB0B)/2LB0B over the range [E(XBnB)-LB0B, E(XBnB)+LB0B]. 

 

THE DECISION PROBLEM 

As usual, the agent should reject an hypothesis U if and only if p(U)<qM(U)—or, in the case 
of point hypotheses, use the density functions of p and M, repsectively: reject the hypothesis 
U if and only if f(U)<qm(U).  On this view, we have: 

Reject UP

-
P if and only if p(UP

-
P)<qM(UP

-
P): reject UP

-
P if and only if ∫B-∞ to E(Xn)-L0B[N(EBnB(X), sqr[(∑Bj=1 to 

nB(xBjB-E(XBnB))P

2
P/(n-1)]/√n)]dz <qpB0B. 

Reject UP

+
P if and only if p(UP

+
P)<qM(UP

+
P): reject UP

+
P if and only if ∫BE(Xn)+L0 to +∞B[N(EBnB(X), 

sqr[(∑Bj=1 to nB(xBjB-E(XBnB))P

2
P/(n-1)]/√n)]dz <qpB0B 

Reject UBxB for x∈[E(XBnB)-LB0B, E(XBnB)+LB0B] if and only if f(UBxB)<qm(UBxB), that is, if and only if the 
value of the normal curve, N(EBnB(X), sqr[(∑Bj=1 to nB(xBjB-E(XBnB))P

2
P/(n-1)]/√n)]<q(1-2pB0B)/2LB0B. 
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Let us consider the possibilities. Suppose as above that LB0B is large and that pB0B is small. 
Nevertheless, unless pB0B or q are very small indeed, the ∫B-∞ to E(Xn)-L0B[N(EBnB(X), sqr[(∑Bj=1 to nB(xBjB-
E(XBnB))P

2
P/(n-1)]/√n)]dz is going to be far smaller than pB0Bq, since it is the “tail end” of a 

normal distribution that is many standard deviations away from the mean. So both UP

-
PB Band 

UP

+
P will be rejected. 

Now consider the middle case (3). What we have here is precisely the same situation as in 
the “bounded” case—with the small difference that the m-function is somewhat smaller than 
the m-function in the bounded case over the same range, since m≡(1-spB0B)/2LB0B and not 
simply 1/2LB0B, for m must account for the possibility of UP

-
P and UP

+
P.  

We know how to solve this problem. In fact, it is even easier, since we have a fixed 
probability function and not a set of such functions. Following the exact same steps 
as in the bounded case, we get that, after the first iteration: 
 

John’s first step: John should reject UP

-
P, reject UP

+
P, and those hypotheses “E(X)=x” in the 

range [E(XBnB)-LB0B, E(XBnB)+LB0B] such that f(x)<qm(x), or N(EBnB(X), s/√n)<q(1-2pB0B)/2LB0B, when s is 
the standard error, that is, sqr[(∑Bj=1 to nB(xBjB-E(XBnB))P

2
P/(n-1)]. In other words, John should accept 

into KBJohn, t0B the claim that E(X)∈[E(XBnB)-ε, E(XBnB)+ε], when ε is where the density function 
N(EBnB(X), s/√n)=q(1-2pB0B)/2LB0B. 

 

As before, even in this first step, if n is large enough for XP

*
PBnB to use the normal 

approximation in the first place, ε will be small. And, in addition, for the same reasons as 
above, it might be that further iterations will allow John to reject even more hypotheses, and 
accept: 

 

John’s Final Inductive Conclusion: John should accept that E(X)∈[E(XBnB)-εP

*
P, E(XBnB)+εP

*
P], 

when 0<εP

*
P≤ε, ε being the value where the (original) density function of the probabilities, 

N(EBnB(X), s/√n)=q(1-2pB0B)/2LB0B. 

 

We see, then, that even if the generator is unbounded, John can usually justifiably conclude 
that its E(X) is within a narrow range, as long as the number of observations is large enough 
to apply the usual laws of statistics (e.g., the assumption that XP

*
PBnB is normal). The mere fact 

that the generator’s moment E(X) could be any value, including a very large one, does not 
require John to take that possibility seriously. And the same, as before, holds mutatis 
mutandis for higher-level moments of the generator. 
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TYPE #3 GENERATORS – PART 1. 

The problem is that in most cases, the agent does not know that the generator is of type I or 
type II. The agent so assumes, but for no better reason than the fact that it is easy to reach 
seemingly “exact” results with such an assumption. 

Suppose, for example, that so far the daily change in a stock’s price have been limited to the 
range between 0 and 10 points. Is there any reason to suspect that it will not move 1000 
points one way or the other in the future? If we knew the generator that was producing the 
stock’s movements was normal, perhaps. But often we do not know it.  

Suppose that an angel told us:  “the phenomena you are observing is generated by a 
generator of type #3.  It is a combination of a “regular” Normal distribution and a Normal 
distribution that gives us very large results with very low probabilities.  I will not tell you 
what the mean, variance, or other moments of this generator are, however.  You will have to 
figure them out from the data.” What could we say about the mean, variance, and higher 
moments of this generator by looking at the data?  Very little indeed – at least as long as no 
catastrophic “black swan” event had in fact occurred.   

The reason is that in the case of such a distribution, most of the value of the moments 
comes from the rare and improbable “black swan” events that are due to the extreme 
Normal distribution, and not the regular and non-catastrophic events that are due to the 
Normal distribution.  As long as no such catastrophic events occurs, we only know a 
“negative” point:  that the observed moments E(XBnB), Var(XBnB), etc. are UnotU close to the actual 
moments E(X), Var(X), etc. But that is all we know, no matter how much (non-catastrophic) 
data we have.  We cannot say anything about what the size of the difference is until we 
actually observe such catastrophic events.  

Let us put this in more formal epistemic form. Again, let us presume that John 
wishes to evaluate what E(X) is. And, once more, consider what John knows.  

From the background information, John knows what the outcome of the generator so 
far has been. John also knows the laws of statistics. Furthermore, John knows that 
the generator is of the form X = (1-p)X’+pX”, where E(X’)<<E(X”) and p<<1. But 
John does not know what p is, or what E(X’), E(X”) are. 
In addition, John knows that no extreme events occurred. That is, John knows that all the 
outcomes so far have been from X’. Can John estimate E(X)? 

The answer is negative. To estimate E(X), the agent needs to do two things: 1) estimate p, 
given that no events from X” occurred, and 2) estimate E(X”). While p can be estimated, in 
fact, the fact that we have no information about about E(X”) precludes more deliberate 
information.  

How does John estimate p? Let us ignore the values of the outcomes and consider a 
simplification: the outcome is either due to generator X’ (with probability 1-p) or due to 
generator X” (with probability p). To help out John, and simplify the calculation we will 
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assume that he knows (by psychic means, perhaps) whether an outcome is from X’ or X”. 
The question is: what is p? 

 

STEP 1: EVALUATING p 

John, here, has an obvious set of options (p from 0 to 1), with an obvious M-function 
(namely, m≡1). John has a set of outcomes of length n which we know produces the p 
event exactly 0 times. For every p, this means that the probability of this occurring is (1-p)P

n
P. 

Now, when do we reject an hypothesis? We reject the hypothesis UBxB (“p = x”) if and only if 
q(UBxB)<qM(UBxB), or, in this case, (1-x)P

n
P<q; that is, John will fail to reject only such x’s such 

that (1-x)P

n
P≥q, or that 1-x≥qP

1/n
P, or -x≥qP

1/n
P-1, or x≤1-qP

1/n
P. That is, John accepts that the real 

p is in the range (0,1-qP

1/n
P]; as n increases, and qP

1/n
P1 (since 0<q<1), this range becomes 

smaller and smaller. 

 

STEP 2: EVALUATING E(X”) 

So far so good. However, John has no information at all about E(X”), and therefore cannot 
limit E(X) in any way, even with this information about p.  

The problem is this. Consider evaluating E(X”) given the outcomes, E(XBnB)—or, more 
precisely, E(XBnB’). First, what are the options John has? John is interested in is as before. 
John is interested in whether or not the real E(X) (=(1-p)E(X’)+pE(X)) is close, or not close, 
to the observed E(XBnB) (=E(X’BnB)). This means that John can use the same options as before: 
namely, for a given LB0B which is large in relation to the standard error of the sample, John 
has UP

-
P = “E(X”)<E(XBnB)-LB0B”; UP

+
P = “E(X”)>E(XBnB)+LB0B”, and UBxB = “E(X”) = x” for E(XBnB)-

LB0B≤x≤E(XBnB)+LB0B. 

John is interested in is as before. John is interested in whether or not the real E(X”) is close, 
or not close, to the observed E(XBnB). This means that John can use the same options as 
before: namely, for a given LB0B which is large in relation to the standard error of the sample, 
John has UP

-
P = “E(X)<E(XBnB)-LB0B”; UP

+
P =   have  M(UP

+
P) = M(UP

-
P) =  pB0B; m≡(1-2pB0B)/2LB0B over the 

range [E(XBnB)-LB0B, E(XBnB)+LB0B]. 

Consider, however, what the allowable probability functions about E(X) being in any range 
are. But John has no data at all—no observations—about X”, only about X’. So there is no 
way to evaluate E(X”). To put it differently, since there are no observations, any probability 
density function from -∞ to +∞ is in John’s QBJohn,t0B. This, of course, is always the case when 
one has literally no observations of the parameter. 
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Consider now the situation. For any given density function f, UBxB in [E(XBnB)-LB0B, E(XBnB)+LB0B] will 
be rejected if and only if the density function f(x)<q(1-2pB0B)/2LB0B; for UP

-
PB Band UP

+
P, if and only if 

∫B-∞ to E(Xn)-L0Bf(z)dz <qpB0B or ∫BE(Xn)+L0 to +∞Bf(z)dz <qpB0B, respectively.  

But since all probability functions, all f’s, that is, are allowed, for every one of the 
hypotheses, UP

-
P and UP

+
P included, there are some probability functions that recommend 

rejecting it and some that recommend accepting it. In particular, there is always some 
probability functions (for example, f≡the M-function itself!) that will recommend rejecting no 
hypothesis. 

What to do? We can use Levi’s rule of ties. Since every possible strategy from rejecting no 
hypothesis to rejecting all but one (it is impossible to reject all of them, as seen above, since 
that means adding an inconsistency to KBJohn,t0B, which is never recommended, see Levi, 1980 
about “deliberate inductive inference”, Ch. 5), that is, they are all E-admissible, the rule of 
ties recommends using the disjunction of all of them—the hypothesis “reject nothing”—as 
long as it is “reasonable” (e.g., itself at least E-admissible.) This is the case, as we’ve just 
seen.  

Finally, there is the case of iteration. But in this case, since nothing is rejected, there is no 
iteration—the first action (“add nothing”) is the final one that is recommended to John. 
There is no reason to conditionalize the probability functions or M, since nothing is added to 
KBJohn,t0B in the first place.  

So the recommended strategy is: 

 

John’s Recommended Inductive Inference for E(X”): Remain in complete suspense 
about E(X”); accept nothing stronger than “E(X”)∈ℝ”. 

 

STEP 3: EVALUATING E(X) = (1-p)E(X’)+pE(X”) 

Now John is finally ready to evalute E(X) itself. Could, perhaps, the fact that at least p can 
be bounded by the agent be of use? The answer is negative. For if there is no information at 
all about E(X”), then there is similarly no information about (1-p)E(X’)+pE(X”).  

The reason is that the evaluating of E(X”) is undounded—it can be anything as far as John is 
concerned—so that the fact that it is multiplied by a small p is of no consequence. John 
cannot exclude the possibility that E(X”)=1,000,000p, or 10P

100
Pp, for that matter.  

To put it somewhat more formally, consider any probability function g which supposedly 
gives us the definition of how E(X) = (1-p)E(X’)+pE(X”) is distributed around ℝ. It is easy to 
find some other probability function, g”, such that if g” is the distribution of E(X”) in ℝ, then 
g is that of E(X). The fact that p is small doesn’t mean that E(X) must be small; if g (say) 
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says that the likelihood of the average of E(X) is distributed around 1,000,000, just choose a 
g” where the likelihood is that E(X”) is distributed around 1,000,000/p.  

So John’s possible functions for the likelihood of E(X) being anywhere in ℝ is still all of the 
possib le probability functions. And for the same reasons as above: 

 

John’s Recommended Inductive Inference for E(X): Remain in complete suspense 
about E(X); accept nothing stronger than “E(X)∈ℝ”. 

 

In conclusion:  even if we know that a certain generator is a type 3  distribution, before a 
catastrophic event occurs we cannot say anything about the difference between the 
observed E(XBnB) and E(X), the observed Var(XBnB) and Var(X), or any other observed moment 
and the “real” one. Before such an event occurs, extrapolating from past data to future 
behavior of such a system is worthless.  

Here we see that the mathematical information is necessary for reaching the epistemological 
conclusion. To conclude that the future is like the past we must know that the mathematical 
equality E(X)~E(XBnB) (and the same with other moments) will hold. If we know that this 
mathematical relations does not hold, then naturally we cannot make any epistemological 
conclusion about the future based on the past in that case. 

  

TYPE #4 GENERATORS – PART 1 

Things are even worse with type 4 generators, for obvious reasons.  If an angel tells us that 
a certain generator is a type 4 one (Pareto-Lévy-Mandelbrot), we know that no relation 
between the observed moments E(XBnB), Var(XBnB), etc. and the “real” moments of the 
generator exist – for the very good reason that there are no such moments.  

TYPE #3 AND #4  GENERATORS – PART 2 

But things are even worse than that. We have just seen that if we know that the generator is 
of type 1 or type 2, we can rely on the observed moments to be close to the “real” 
moments.  We also showed that if we know that the generator is of type 3 or type 4, the 
observed moments (at least before a catastrophic “black swan” event occurs) are worthless 
in finding the values of the real moments. 

But all these scenarios assume that we know what type the generator is.  Suppose we don’t 
know what it is, and want to see if the data helps us figure this out? In that case, the 
mathematical equality between the observed and actual moments, even if it holds (even if 
the generator, that is, is in fact of type #1 or #2), might not be enough to reach any 
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epistemological conclusions about the similarity of the past to the future. The mathematical 
equality is necessary, but not sufficient.  

Consider the following situation.  Suppose an angel tells you that a certain generator is 
either type 2 (Normal) or type 3 distribution (a mixed combination of Normal and Poisson).  
Consider the data xB1B, xB2B, … xBnB.  As long as no catastrophic “Poisson event” had actually 
occurred, the data would be indistinguishable between type 2 and type 3 generators, since 
all the outcomes of the type 3 generator would still be due to the “Normal” part of its 
distribution.  We will not be able to tell due to anything in the data whether it is one or the 
other.  

More generally, suppose that an angel tells us that a certain outcome might be due to a 
generator of type 3 or 4, as well as a type 1 or 2 generators. Does any amount of data tell 
us anything about whether or not this is true, before a “black swan” event happens?  No, 
since until a low-probability catastrophe actually occurs, if the generator is in fact of type 3 
or 4, the data would look indistinguishable from that of a generator of type 1 or 2, as we’ve 
just seen. 

So if we don’t know that the generator is not type 3 or 4, then our data is just as worthless 
in assessing the future behavior of the generator as if we knew that it is type 3 or 4.  This is 
not because E(XBnB), Var(XBnB) and so on must be far from the “real” E(X), Var(X), etc. (if they 
exist), but because we can never tell from the data whether they are or not before a 
catastrophe happens. And if we don’t know the moments, ipso facto we don’t know anything 
about the probabilities of the generator’s outcomes, which depend for their calculation on 
these moments.  We cannot tell anything about the risk of any future outcome.  We are in a 
situation of decision making under uncertainty.   

In summary, for the epistemic inductive inference from the past outcomes to the future ones 
to be worthless, we need not know that the generator is of the “dangerous” type: it need not 
be the case that E(X)≠E(XBnB) (or the same for the other moments).  It is enough not to know 
that it is not of that type.  In such a situation, a “black swan” could surprise it at any 
moment – and we wouldn’t be able to tell whether it would happen or not until after the 
fact. The mathematical equality E(X)=E(XBnB) is of no use to us if we cannot know in advance 
that it holds before a catastrophic event occurs. 

  

COULD SUCH GENERATORS EXIST? 

This entire discussion would have remained completely theoretical if it was not the case that 
the situations risk managers deal with could involve the “bad” types of the generators – that 
is, unless epistemic assumption #4 above holds.  

We have seen above that many economists dismiss the possibility of assumption #4. we 
claim that, unfortunately, in economical situations generators of this type can occur.  
Physical systems (as Mandelbrot says—add references) must be of the “benign” type – type 
1 or 2, or, more specifically, of type 1 (a “bounded” generator).  The laws of physics bound 
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their values – specifically, the amount of energy in the system, the entropy of the system, 
and other such physical characteristics cannot move beyond a certain range (add other 
references except for Mandelbrot, e.g., his sources.).   

Social systems, as well, are bounded.  If nothing else, there is a lower bound for the “worse 
possible outcome” – namely, death.  This is not because nothing can be worse from the 
individual’s point of view than his or her own death, but because one can (almost?) always 
avoid such circumstances by choosing suicide instead. (Is this the case??? Perhaps erase 
this??? What about “infinite badness” like Hobbes believed???) 

In physical and social systems, therefore, it is often the case that we can tell in advance, due 
to external, purely deductive reasons, that the “generator” must be bounded and therefore 
(relatively) benign; we can therefore use the past data for inductive inference about the 
future, as we seen above. 

In many financial systems, however, this is not the case (references?).  There are potential 
events in many such systems that would cause losses (or gains) that are, in theory, 
unbounded.  To convince oneself of this, one need only look at a simple “option”:  the 
possibility exists of losing an infinite amount of money combined with the fact that such 
probability may remain unknown by us. (References.)    

This is not to say, of course, that death is somehow “better” than losing a lot of money, or 
that gaining or losing an infinite (or very, very, large) amount of money is physically 
possible.  The point is, rather, that in the case of a physical system one knows that one can 
describe the system with a bounded (or, at worse, a compact-supported) generator, while if 
we look at a financial system this cannot be promised. (Remove this paragraph, perhaps? Or 
give more references?) 

  

THE RECOMMENDED STRATEGY IN SUCH SITUATIONS, AND “LONG-TERM 
CAPITAL” REVISITED 

The conclusion of this epistemological excursion is as follows: in such situations, we are in an 
essentially “uncertain” situation.   

If we must make decisions in such a situation, our best bet is to use a strategy suited to 
“uncertainty”. Minmax (or similar strategies) will not work, because of unboundedness. 
(references to the strategies of uncertainty—perhaps again?)  “Forcing” oneself to use a 
specific probability value will lead to grief: it is useless to protect oneself against the risk of a 
certain outcomes when you really have no reason to give it any specific probability. 

Note in particular that the well-known device of taking “safety margins” will not work.  
Suppose that one is willing to take a one-in-a-million risk of bankruptcy, but – in order to 
“hedge” one’s bets – only makes trades that (according to his or her calculations) have a 
one-in-a-trillion chance of going so badly as to lead into bankruptcy.  Will taking such a 
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ludicrous “safety margin” – a factor of 1,000,000 – help the risk manager avoid bankruptcy 
in such situations?   

The answer is no.  Taking such “safety measures” is a reasonable device if one knows that 
the generator if of one of the “benign” types, e.g. type 1 or 2, and therefore one knows that 
one is justified in making assumptions about the probabilities of events happening in the 
future using the observed parameters as approximations for the actual parameters of the 
generator, but might not be completely sure about the exact values the parameters should 
have.  In other work, this would work in cases where one knows one can safely describe the 
situation as one of decision making under risk, although one is not sure exactly what risk.   

In a situation where the generator might be of type 3 or 4, however, one doesn’t simply 
have a vague idea of what the risk is; one has no idea what it is, and cannot assign any 
value to it.  Taking only “trillion-to-1” bets against bankruptcy is worthless in such a situation 
since the assessment of the risk of a certain trade as trillion-to-1 is worthless in the first 
place.  There is no ‘there’ there:  the calculated “million to one safety margin” doesn’t 
correspond to anything in reality. (Add something or is this ehough?) 

We have no real base to give credence to this estimation; the relaxing number “a trillion to 
1” has only psychological significance in such a situation – as the occurrence of the 
“impossible” 10-σ event in the case of “Long Term Capital” shows. It is not as if a 10-σ event 
actually occurred. Rather, the belief that it is a 10-σ event was based on the unjustified 
conclusion that the generator involved is of the benign type in the first place.   

Therefore, the risk managers did not consider the possibility of the generator being of the 
third or fourth type, where events that would be 10-σ events if the generator were of the 
benign type, actually occur far more frequently. 

Our only recourse in such situations is Popper’s solution:  to wait for the “black swan”, and 
make sure that we are not destroyed by it. (Add more about Popper here—the falsification 
requirement. I am not sure that this is really our “only recourse”. Again, look at strategies 
under uncertainty for detail—P.) 

  

SUMMARY 

In this chapter, we have tried to show the essential problem of risk management is forcing 
situations of decision making under uncertainty into the straightjacket of decision making 
under risk.   

We showed this in a few steps: :   

First, we showed that certain random generators have a “bad” relation between their 
observed moments and their actual moments.   This is a purely mathematical issue. 
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Second, we have shown if one’s background information satisfies certain conditions, then if 
such generators are not ruled out, the mere possibility that they are the generator one is 
dealing with sabotages any attempt to assign specific values to the “real” moments of the 
generator, due to the “black swan” problem – the possibility of rare extreme events which 
have a large influence on the moments. This is an epistemological issue.  

Third, this forces us This  forces us to conclude we are in a situation of decision making 
under uncertainty.  This is a decision-theoretic matter.  

Fourth, we showed that, in fact, the situation risk managers deal with are precisely those 
where such generators cannot be ruled out. This is a scientific issue: it has to do with the 
different nature of physical and economic systems.  

Fifth closely related to the third issue,  we showed that common “avoidance” procedures – 
taking only what seems like “very low” risks – will not work, since the implicitly assume the 
situation is one of decision making under risk in the first place.  Even “usually” procedures 
for decisiom making under uncertainty – minmax, minamx regret, etc. – will not work, since 
the “bad” generators are not bound.  

Finally, we show that in such situation, the only thing we can do is protect ourselves against 
the black swan –and recognize that we may not know much about it. This is the (type of 
strategy) strategy, which is applicable to this sigtuation. 
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