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Abstract: Outside the Platonic world of financial models, assuming the underlying distribution is a scalable "power law", 
we are unable to find a consequential difference between finite and infinite variance models –a central distinction 
emphasized in the econophysics literature and the financial economics tradition. While distributions with power law tail 
exponents α>2 are held to be amenable to Gaussian tools, owing to their "finite variance", we fail to understand the 
difference in the application with other power laws (1<α<2) held to belong to the Pareto-Lévy-Mandelbrot stable 
regime. The problem invalidates derivatives theory (dynamic hedging arguments) and portfolio construction based on 
mean-variance. This paper discusses methods to deal with the implications of the point in a real world setting. 

 

 

 

1.  The Four Problems of Practice  

This note outlines problems viewed solely from the 
vantage point of practitioners of quantitative finance 
and derivatives hedging, and the uneasy intersection of 
theories and practice; it aims at asking questions and 
finding robust and practical methods around the 
theoretical difficulties. Indeed, practitioners face 
theoretical problems and distinctions that are not visibly 
relevant in the course of their activities; furthermore 
some central practical problems appear to have been 
neglected by theory. Models are Platonic: going from 
theory to practice appears to be a direction that is 
arduous to travel. In fact, the problem may be even 
worse: seen from a derivatives practitioner’s vantage 
point, theory may be just fitting (albeit with 
considerable delay), rather than influence, practice. 
This article is organized around a class of such 
problems, those related to the effect of power laws and 
scalable distributions on practice. We start from the 
basis that we have no evidence against Mandelbrot’s 
theory that financial and commodity markets returns 
obey power law distributions [Mandelbrot, 1963, 1997], 
(though of unknown parameters). We do not even have 
an argument to reject it. We therefore need to find 
ways to effectively deal with the consequences.  

We find ourselves at the intersection of two lines of 
research from which to find guidance: orthodox 
financial theory and econophysics. Financial theory has 
been rather silent on power laws (while accepting some 
mild forms of "fat tails" though not integrating them or 

taking them to their logical consequences) –we will see 
that power laws (even with finite variance) are totally 
incompatible with the foundations of financial 
economics, both derivatives pricing and portfolio 
theory. As to the econophysics literature: by adopting 
power laws, but with artificial separation parameters, 
using α=2, it has remedied some of the deficits of 
financial economics but has not yet offered us help for 
our problems in practice1. 

We will first identify four problems confronting 
practitioners related to the fat tailed distributions under 
treatment of common finance models, 1) problems 
arising from the use by financial theory, as a proxy for 
"fat tails", of milder forms of randomness too 
dependent on the Gaussian (non-power laws), 2) 
problems arising from the abstraction of the models 
and properties that only hold asymptotically, 3) 
problems related to the temporal independence of 
processes that lead to assume rapid convergence to the 
Gaussian basin, and, 4) problems related to the 

                                                   
1 There has been a family of econophysics papers that 

derive their principal differentiation from Mandelbrot (1963) 
on the distinction between Levy-Stable basins and other power 
laws (infinite v/s finite variance): Plerou et al (2001), Stanley 
et al (2001), Gabaix et al (2003a, 2003b), Gopikrishnan et al 
(1998, 1999, 2000) and others. Furthermore, Plerou et al 
(2002) derive the “cubic” tail exponent α=3 from order flow (a 
combination of α=3/2 for company and order size and 
nonlinear square root impact for order impact) –a causal 
argument that seems unconvincing to any professional, 
particularly when the paper ignore the share of equity 
variations that comes from jumps around corporate 
announcements –such as earnings or mergers. These 
discontinuities occur before the increase in volume. 
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calibration of scalable models and to the fitting of 
parameters.  

Note here that we provide the heuristic attribute of a 
scalable distribution as one where for some "large" 
value of x, P>x ~ K x-α , where P>x is the "exceedant 
probability", the probability of exceeding x, and K is a 
scaling constant. (Note that the same applies to the 
negative domain). The main property under concern 
here, which illustrates its scalability, is that, in the tails, 
P>nx /P>x depends on n, rather than x.  

The Criterion of Unboundedness: One critical point 
for deciding the controversial question “is the 
distribution a power law?” Unlike the econophysics 
literature, we do not necessarily believe that the 
scalability holds for x reaching infinity; but, in practice, 
so long as we do not know where the distribution is 
eventually truncated, or what the upper bound for x is, 
we are forced operationally to use a power law. Simply 
as we said, we cannot safely reject Mandelbrot [1963, 
1997]. In other words, it is the uncertainty concerning 
such truncation that is behind our statement of 
scalability.  it is easy to state that the distribution might 
be lognormal, which mimics a power law for a certain 
range of values of x. But the uncertainty coming from 
where the real distribution starts becoming vertical on a 
Log-Log plot (i.e. α rising towards infinity) is central –
statistical analysis is marred with too high sample errors 
in the tails to help us. This is a common problem of 
practice v/s theory that we discuss later with the 
invisibility of the probability distribution2 [For a typical 
misunderstanding of the point, see Perline 2005]. 

Another problem: the unknowability of the upper bound 
invites faulty stress testing. Stress testing (say, in 
finance) is based on a probability-free approach to 
simulate a single, fixed, large deviation – as if it were 
the known payoff from a lottery ticket. However the 
choice of a “maximum” jump or a “maximum likely” 
jump is itself problematic, as it assumes knowledge of 
the structure of the distribution in the tails 3 . By 
assuming that tails are power-law distributed, though of 
unknown exact parameter, one can project richer sets 
of possible scenarios.   

                                                   
2 The inverse problem can be quite severe – leading to the 

mistake of assuming stochastic volatility (with the convenience 
of all moments) in place of a scale-free distribution (or, 
equivalently, one of an unknown scale).  Cont and Tankov 
(2003) show how a Student T with 3 degrees of freedom 
(infinite kurtosis will mimic a conventional stochastic volatility 
model. 

3 On illustration of how stress testing can be deemed 
dangerous –as we do not have a typical deviation – is provided 
by the management of the 2007-2008 subprime crisis. Many 
firms, such as Morgan Stanley, lost large sums of their capital 
in the 2007 subprime crisis because their stress test 
underestimated the outcome –yet was compatible with 
historical deviations ( see “The Risk Maverick”, Bloomberg, 
May 2008). 

1.1 FIRST PROBLEM - THE EFFECT OF THE RELIANCE ON 

GAUSSIAN TOOLS AND THE DEPENDENCE ON THE L
2 

NORM.  

The finance literature uses variance as a measure of 
dispersion for the probability distributions, even when 
dealing with fat tails. This creates a severe problem 
outside the pure Gaussian nonscalable environment.  

Financial economics is grounded in general Gaussian 
tools, or distributions that have all finite moments and 
correspondingly a characteristic scale, a category that 
includes the Log-Gaussian as well as subordinated 
processes with non-scalable jumps such as diffusion-
Poisson, regime switching models, or stochastic 
volatility methods [see Hull, 1985;Heston,1993; Duffie, 
Pan, and Singleton, 2000, Gatheral, 2006], outside 
what Mandelbrot, 1997, bundles under the designation 
scale-invariant or fractal randomness.  

All of these distributions can be called "fat-tailed", but 
not scalable in the above definition, as the finiteness of 
all moments makes them collapse into thin tails:  

 1) for some extreme deviation (in excess 
of some known level) ,  
or  

 2) rapidly under convolution, or temporal 
aggregation. Weekly or monthly properties are 
supposed to be closer, in distribution, to the Gaussian 
than daily ones. Likewise, fat tailed securities are 
supposed to add up to thin-tailed portfolios, as portfolio 
properties cause the loss of fat-tailed character rather 
rapidly, thanks to the increase in the number of 
securities involved.  

The dependence on these "pseudo-fat tails", or finite 
moment distributions, led to the building of tools based 
on the Euclidian norm, like variance, correlation, beta, 

and other matters in L
2 

. It makes finite variance 
necessary for the modeling, and not because the 
products and financial markets naturally require such 
variance. We will see that the scaling of the distribution 
that affect the pricing of derivatives is the mean 

expected deviation, in L
1 

, which does not justify such 
dependence on the Eucledian metric.  

The natural question here is: why do we use variance? 
While it may offer some advantages, as a "summary 
measure" of the dispersion of the random variable, it is 
often meaningless outside of an environment in which 
higher moments do not lose significance.  

But the practitioner use of variance can lead to 
additional pathologies. Taleb and Goldstein [2007] 
show that most professional operators and fund 
managers use a mental measure of mean deviation as a 
substitute for variance, without realizing it: since the 

literature focuses exclusively on L
2
 metrics, such as 
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“Sharpe ratio”, “portfolio deviations”, or sigmas”. 
Unfortunately the mental representation of these 
measures is elusive, causing a substitution. There 
seems to be a serious disconnect between decision 
making and projected probabilities.  Standard deviation 
is exceedingly unstable compared to  mean deviation in 
a world of fat tails (see an illustration in Figure 1). 

 

Figure 1 Distribution of the monthly STD/MAD 
ratio for the SP500 between 1955 and 2007 

  

1.2 SECOND PROBLEM, "LIFE OUTSIDE THE 
ASYMPTOTE": QUESTIONS STEMMING FROM 

IDEALIZATION V/S PRACTICE  

The second, associated problem comes from the 
idealization of the models, often inexactly the wrong 
places for practitioners, leading to the reliance on 
results that work in the asymptotes, and only in the 
asymptotes. Furthermore the properties outside the 
asymptotes are markedly different from those at the 
asymptote. Unfortunately, operators live far away from 
the asymptote, with nontrivial consequences for pricing, 
hedging, and risk management.  

a) Time aggregation  

Take the example of a distribution for daily returns that 
has a finite second moment, but infinite kurtosis, say a 
power-law with exponent <4, of the kind we observe 
routinely in the markets. It will eventually, under time 
aggregation, say if we lengthen the period to weekly, 
monthly, or yearly returns, converge to a Gaussian. But 
this will only happen at infinity. The distribution will 
become increasingly Gaussian in the center, but not in 
the tails. Bouchaud and Potters,2002, show how such 
convergence will be extremely slow, at the rate of  

€ 

n log(n)  standard deviations, where n is the number 

of observations. A distribution with a power law 
exponent α >2, even with a million convolutions, will 
eventually behave like a Gaussian up until about 3 
standard deviations but conserve the power-law 
attributes outside of such regime. So, at best we are 
getting a mixed distribution, with the same fat tails as a 
nonGaussian --and the tails are where the problems 
reside.   

More generally, the time-aggregation of probability 
distributions with some infinite moment will not obey 
the Central Limit Theorem in applicable time, thus 
leaving us with non-asymptotic properties to deal with 
in an effective manner Indeed it may not be even a 
matter of time-window being too short, but for 
distributions with finite second moment, but with an 
infinite higher moment,  for CLT to apply we need an 
infinity of convolutions.  

b) Discreteness  

We operate in discrete time while much of the theory 
concerns mainly continuous time processes [Merton, 
1973,1992], or finite time operational or computational 
approximations to true continuous time processes [Cox 
and Ross,1976; review in Baz and Chacko, 2004]. 
Accordingly, the results coming from taking the limits of 
continuous time models, all Gaussian-based (non-
scalable) pose difficulties in their applications to reality.  

A scalable, unlike the Gaussian, does not easily allow 
for continuous time properties, because the continuous 
time limit allowing for the application of Ito's lemma is 
not reached, as we will see in section 2.2.  

1.3 THIRD PROBLEM- STABILITY AND TIME 
DEPENDENCE.  

Most of the mathematical treatment of financial 
processes reposes on the assumption of time-
independence of the returns. Whether it is for 
mathematical convenience (or necessity) it is hard to 
ascertain; but it remains that most of the distinctions 
between processes with finite second moment and 
others become thus artificial as they reposes heavily on 
such independence.  

The consequence of such time dependence is the 
notion of distributional "stability", in the sense that a 
distribution loses its properties with the summation of 
random variables drawn from it. Much of the work 
discriminating between Levy-fat tails and non Levy fat 
tails reposes on the notion that a distribution with tail 
exponent α<2 is held to converge to a Levy stable 
basin, while those with α≥2 are supposed to become 
Gaussian.  

The problem is that such notion of independence is a 
bit too strong for us to take it at face value. There may 
be serial independence in returns, but coexisting with 
some form of serial dependence in absolute returns --
and the consequences on the tools of analysis are 
momentous4.  

                                                   
4  One candidate process is Mandelbrot's multifractal 

model [Mandelbrot,2004] in which the tail exponent conserves 
under addition. Daily returns can have a α=3, so will monthly 
returns. 
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In other words, even in the asymptote, a process with 
finite variance that is not independently distributed is 
not guaranteed to become Gaussian.  

This point further adds to the artificiality of the 
distinction between α<2 and α≥2. Results of 
derivatives theory in the financial literature exclude 
path dependence and memory, which causes the 
aggregation of the process to hold less tractable 
properties than expected--making the convergence to a 
Gaussian basin of attraction less granted. While the 
returns may be independent, absolute values of these 
returns may not be, which causes extreme deviations to 
cumulate in a manner to fatten the tails at longer 
frequencies [See Sornette,2004, for the attributes of 
the drawdowns and excursions as these are more 
extreme than regular movements; deviations in the 
week of the stock market crash of 1987 were more 
extreme, statistically, than the day of the greatest 
move].Naively, if you measure the mean average 
deviation of returns over a period, then lag them you 
will find that the measure of deviation is sensitive to the 
lagging period.[Also see Lo and McKinley,1995,for a 
Gaussian test].  

1.4 FOURTH PROBLEM- THE VISIBILITY OF 
STATISTICAL PROPERTIES IN THE DATA  

The final problem is that operators do not observe 
probability distributions, only realizations of a stochastic 
process, with a spate of resulting mistakes and 
systematic biases in the measurement process [Taleb 
and Pilpel, 2004; Taleb, 2007]. Some complicated 
processes with infinite variance will tend exhibit finite 
variance under the conventional calibration methods, 
such as the Hill estimator or the Log-Linear regressions 
[Weron,2001]. In other words, for some processes, the 
typical error can be tilted towards the underestimation 
of the thickness of the tails. A process with an α=1.8 
can easily yield α >2 in observations.  

An argument in favor of "thin tails", or truncated power 
laws, is usually made with representations of the 
exceedant frequencies in log-log space that show the 
plot line getting vertical at some point, indicating an a 
pulling towards infinity. The problem is that it is hard to 
know whether this cutoff is genuine --and not the result 
of sample insufficiency. Such perceived cutoff can easily 
be the result of sampling error, given that we should 
find fewer data points in the far tails [Taleb, 2005]. But 
in fact, assuming truncation is acceptable, we do not 
know where the distribution is to be truncated. Relying 
on the past yields in-sample obvious answers 
[Mandelbrot, 2004] --but it does not reveal the true 
nature of the generator of the series. In the same vein, 
many researchers suggest the lognormal [Perline, 2005, 
see Mandelbrot 1997 for the review], or stretched 
exponential [Sornette, 2004]. On that score, the 
financial economics literature presents circular 

arguments, favoring Poisson jumps, and using the 
same assumed distribution to gauge the sufficiency of 
the sample, without considering the limitations of the 
sample in revealing tail events [Coval and 
Shumway,2000; Bodarenko, 2004 5 ]. (Simply, rare 
events are less likely to show in a finite sample; 
assuming homogeneous past data, 20-year history will 
not reveal one-in-50-year events.) The best answer, for 
a practitioner, is to plead ignorance: so long as we do 
not know where the truncation starts, it is safer to stick 
to the assumption of power laws.  

 

1.5 THE MAJOR CONSEQUENCE OF THESE FOUR 
PROBLEMS  

The cumulation of these four problems results in the 
following consequence: in “real life”, the problems 
incurred when the tail exponent α<2 effectively prevail 
just as well when α>2. The literature [Gopikrishnan et 
al, 1998, Gabaix et al, 2003, 2004] reports "evidence" 
in the equities markets, of a cubic α, i.e., a tail 
exponent around 3. Their dataset of around 18 million 
observations is available to most practitioners (including 
this author); it is extremely easy to confirm the result --
in sample. The econonophysics literature thus makes 
the distinction between Levy-regime and other whereas 
for us practitioners, because of the time aggregation 
problem, there is no such distinction. A scalable is a 
scalable: the tails never become thin enough to allow 
the use of Gaussian methods.  

We will need to consider the consequences of the 
following two considerations:  

1) The infinite moments never allow for 
derivations based on expansions and Ito's 
lemma  

2) Processes do not necessarily converge to 
the Gaussian basin, making conventional tools 
like standard deviations inapplicable. 

3) Parameter discovery is not as obvious as in 
the Gaussian world. 

The main option pricing and hedging consequences of 
scalability do not arise from the finiteness of the 
variance but rather from the lack of convergence of 
higher moments. Infinite kurtosis, which is what 
empirical data seems to point to in almost every market 
examined, has the same effect. There are no tangible, 
or qualitative differences in practice between such 
earlier models such as Mandelbrot [1963], on one hand 
and later expositions showing finite variance models 
with a "cubic" tail exponent. Fitting these known 

                                                   
5 In addition, these tests are quite inadequate outside of 

L
2
since they repose of measurement and forecast of variance.  



 

  
 
©  Copyright 2008 by N. N. Taleb.  

5 

processes induces the cost of severe  mistracking of 
empirical reality.  

The rest of this article will focus on the application of 
the above four problems and its consequence to 
derivatives pricing. We will first present dynamic 
hedging that is at the center of modern finance's 
version of derivatives pricing, and its difficulty outside 
of the Gaussian case owing to incompressible tracking 
errors. We then show how variance does not appear 
relevant for an option operator and that distributions 
with infinite variance are not particularly bothersome 
outside of dynamic hedging. Then we examine methods 
of pricing followed with the common difficulties in 
working with NonGaussian distributions with financial 
products. We examine how these results can be 
extended to portfolio theory.  

 2- The applications 
 

2.1 FINITE VARIANCE IS INSUFFICIENT FOR 
PORTFOLIO THEORY  

First, let us consider portfolio theory. There appears to 
be an accepted truism [after Markowitz, 1952], that 
mean-variance portfolio allocation requires, but can be 
satisfied with, only the first two moments of the 
distribution –and that fatness of tails do not invalidate 
the arguments presented. I leave aside the requirement 
for a certain utility structure (a quadratic function) to 
make the theory work, and assume it to be acceptable 
in practice6. 

Where x is the payoff (or wealth), and U the utility 
function: 

U(x) = a x – b x2 , a, b>0, 

By taking expectations, the utility of x 

E[U(x)]= a E[x] – b E[x2] 

So seemingly higher moments do not matter. Such 
reasoning may work in the Platonic world of models, 
but, when turned into an application, even without 
relaxing any of the assumptions, it reveals a severe 
defect: where do we get the parameters from? E[x2], 
even if finite, is not observable. A distribution with 
infinite higher moments E[xn] (with n>2) will not reveal 
its properties in finite sample. Simply, if E[x4] is infinite, 
E[x2] will not show itself easily. The expected utility will 
remain stochastic, i.e., unknown. Much of the problems 
in financial theory come from the dissipation upon 
application of one of the central hypotheses: that the 
operator knows the parameters of the distribution (an 

                                                   
6  This is one of the arguments against the results of 

Mandelbrot (1963) using the “evidence” provided by Officer 
(1972).  

application of what Taleb, 2007, calls the “ludic 
fallacy”). 

The idea of mean-variance portfolio theory then has no 
possible practical justification.  

2.2 DIFFICULTIES WITH FINANCIAL THEORY'S 
APPROACH TO OPTION PRICING  

Technë-Epistemë: The idea that operators need 
theory, rather than the other way around, has been 
contradicted by historical evidence [Taleb and Haug, 
2008].  They showed how option traders managed in a 
quite sophisticated manner to deal with option pricing 
and hedging –there is a long body of literature, from 
1902,  ignored by the economics literature presenting 
trading techniques and heuristics. The literature had 
been shy in considering the hypothesis that option price 
formation stems from supply and demand, and that 
traders manage to develop tricks and methods to 
eliminate obvious mispricing called “free lunches”. So 
the result is that option theory seems to explain (or 
simplify) what is being done rather than drive price 
formation. Gatheral (2006) defines the profession of 
modelers as someone who finds equations that fit 
prices in the market prices with minimal errors, rather 
than the reverse. Accordingly the equations about the 
stochastic process do not have much beyond an 
instrumental use (to eliminate inconsistencies) –they do 
not correspond to a representation of future states of 
the world7. 

Standard Financial Theory: Let us now examine 
how financial theory “values” financial products (using 
an engineering/practitioner exposition).  The principal 
difference in paradigm between the one presented by 
Bachelier, 1900, and the modern finance one known as 
Black-Scholes-Merton [Black-Scholes,1973, and Merton, 
1973] lies in the following main point. Bachelier's model 
is based on an actuarial expectation of final payoffs. 
The same method was later used by a series of 
researchers, such as Sprenkle (1964), Boness (1964), 
Kassouf and Thorp (1967), Thorp (1970). They all 
encountered the following problem: how to produce a 
risk parameter –a risky asset discount rate -- to make it 
compatible with portfolio theory? The Capital Asset 
Pricing Model requires that securities command an 
expected rate of return in proportion to their 
“riskiness”. In the Black-Scholes-Merton approach, an 
option price is derived from continuous-time dynamic 
hedging, and only in properties obtained from 
continuous time dynamic hedging --we will describe 
dynamic hedging in some details further down. Thanks 
to such a method, an option collapses into a 

                                                   
7 In the same vein, we repeat that the use of power-laws 

does not necessarily correspond to the belief that the 
distribution is truly parametrized as a power law, rather 
selected owing to the absence of knowledge of the properties in 
the tails.  
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deterministic payoff and provides returns independent 
of the market; hence it does not require any risk 
premium.  

The problem we have with the Black-Scholes-Merton 
approach is that the requirements for dynamic hedging 
are extremely idealized, requiring the following strict 
conditions –idealization might have gone too far, and 
dangerously so, of the style “assume the earth was 
square”. The operator is assumed to be able to buy and 
sell in a frictionless market, incurring no transaction 
costs. The procedure does not allow for the price 
impact of the order flow--if an operator sells a quantity 
of shares, it should not have consequences on the 
subsequent price. The operator knows the probability 
distribution, which is the Gaussian, with fixed and 
constant parameters through time (all parameters do 
not change). Finally, the most significant restriction: no 
scalable jumps. In a subsequent revision [Merton, 
1976] allows for jumps but these are deemed to be 
Poisson arrival time, and fixed or, at the worst, 
Gaussian. The framework does not allow the use of 
power laws both in practice and mathematically. Let us 
examine the mathematics behind the stream of 
dynamic hedges in the Black-Scholes-Merton equation.  

Assume the risk-free interest rate r=0 with no loss of 
generality. The canonical Black-Scholes-Merton model 
consists in building a dynamic portfolio by selling a call 
and purchasing shares of stock that provide a hedge 
against instantaneous moves in the security. Thus the 
value of the portfolio π locally "hedged" against 
exposure to the first moment of the distribution is the 
following: 

€ 

π = −C +
∂C
∂S

S   

 

where C is the call price, and S the underlying security.  

By expanding around the initial values of the underlying 
security S, we get the changes in the portfolio in 
discrete time. Conventional option theory applies to the 
Gaussian in which all orders higher than ΔS2 and Δt 
(including the cross product ΔS Δt) are neglected.  

 

€ 

Δπ =
∂C
∂t
Δt − 1

2
∂ 2C
∂S2

ΔS2 +O(ΔS3)   

Taking expectations on both sides, we can see very 
strict requirements on moment finiteness: all moments 
need to converge for us to be comfortable with this 
framework. If we include another term, ΔS3 , it may be 
of significance in a probability distribution with 
significant cubic or quartic terms. Indeed, although the 
n

th
 derivative with respect to S can decline very sharply, 

for options that have a strike K away from the initial 
price S, it remains that the moments are rising 

disproportionately fast, enough to cause potential 
trouble.  

So here we mean all moments need to be finite and 
losing in impact --no approximation would do. Note 
here that the jump diffusion model (Merton,1976) does 
not cause much trouble for researchers since it has all 
the moments --which explains its adoption in spite of 
the inability to fit jumps in a way that tracks them out-
of-sample. And the annoyance is that a power law will 
have every moment higher than a infinite, causing the 
equation of the Black-Scholes-Merton portfolio to fail.  

As we said, the logic of the Black-Scholes-Merton so-
called “solution” is that the portfolio collapses into a 
deterministic payoff. But let us see how quickly or 
effectively this works in practice.  

The actual replication process: According to 
standard financial economics [Merton, 1992], the payoff 
of a call is expected to be replicated in practice with the 
following stream of dynamic hedges. The procedure is 
as follows (again, assuming 0 interest rates): Take C 
the initial call price, St the underlying security at initial 
period t, and T the final expiration of the option. The 
performance will have three components: 1) C the 
initial call value as cash earned by the option seller, 2) 
Max (ST-K,0) , the final call value (intrinsic value) that 
the option seller needs to disburse, and 3) the stream 
of dynamic hedges aiming at offsetting the pair  C - 
Max (ST-K,0), in quantities of the underlying held in 
inventory, revised at different periods. 

So we are concerned with the evolution between the 
two periods t and T –and the stream of dynamic 
hedges.   Break up the period (T-t) into n increments 
Δt. The operator changes the hedge ratio, i.e. the 
quantities of the underlying security he is supposed to 
have in inventory, as of time  t +(i-1) Δt,, then gets the 
difference between the prices of S at periods t +(i-1) Δt 
and t +i Δt (called nonanticipating difference). Where P 
is the final profit/loss: 

€ 

P = −C + (K − ST ) +
∂C
∂St=1

n=
T− t
Δt

∑
S= St+( t−1)Δt ,t= t+( i−1)Δt

(St+ iΔt − St+(t−1)Δt )

 

Standard option theory  considers that the final 
package P of the three components will become 
deterministic at the limit of Δt → 0, as the stream of 
dynamic hedges reduces the portfolio variations to 
match the option. This seems mathematically and 
operationally impossible8.  

 
Failure: How hedging errors can be prohibitive.  

                                                   
8 See Bouchaud and Potters (2002) for a critique.  
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As a consequence of the mathematical property seen 
above, hedging errors in an cubic α appear to be  
indistinguishable from those from an infinite variance 
process. Furthermore such error has a 
disproportionately large effect on strikes, as we 
illustrate  in Figures 2, 3  and 4. Figure 2 illustrate the 
portfolio variations under a finite variance power law 
distribution, subjected to the same regime of revision 
(∆t = 1 business day, 1/252), compared to the 
Gaussian in Figure 3. Finally Figure 4 shows the real 
market (including the crash of 1987). 

 

Figure 2 shows the hedging errors for an option 
portfolio (under a daily revision regime) over 3000 
days, under a constant volatility Student T with tail 
exponent α=3. Technically the errors should not 
converge in finite time as their distribution has infinite 
variance. 

 

 

Figure 3 -Hedging errors for an option portfolio (equivalent 
daily revision) under an equivalent "Black-Scholes" world.  

 

 

Figure 4 -Portfolio Hedging errors including the stock 
market crash of 1987. 

In short: dynamic hedging in a power law world does 
not remove risk. 

 

Options without variance  

Based on this dynamic hedging problem, we look at 
which conditions we need to “price” the option.  Most 
models base the option on variance. Clearly options do 
not depend on variance, but on mean average 
deviation,  --but it is expressed in terms of variance. 

Consider the  Bachelier expectation framework --the 
actuarial method of discounting the probabilistic payoffs 
of the options. Where F is the forward, the price in the 
market for the delivery of S at period T, and regardless 
of the probability distribution φ, under the sole 
restriction that the first moment ∫ F φ(F) dF exists, the 
puts and calls can be priced as follows (assuming, to 
simplify, 0 financing rates): 

€ 

C(K) = (F −K)φ(F)dK
K

∞

∫  

€ 

P(K) = (K − F)φ(F)dK
0

K

∫  

Where C(K) and P(K) are the call and put struck at K, 
respectively. Thus when the options is exactly at-the-
money by the forward, i.e. K=F, each delivers half the 
discounted mean absolute deviation  

€ 

C(K) = P(K) =
1
2

(ΔF)φ(F)dK
0

∞

∫  

 
An option's payoff is piecewise linear as can be shown 

in Figure 5.  
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Figure 5 Straddle price: options are piecewise linear, 
with a hump at the strike –the variance does not enter 
the natural calculation. 

In a Gaussian world, we have the mean absolute 
deviation over standard deviation as folllows:  

€ 

m
σ

=
2
π

 

But, with fat tails, the ratio of the dispersion 
measures  drops, as σ reaches infinity when 1 < α < 
2.  This means that a simple sample of activity in the 
market will not reveal much since most of the 
movements become concentrated in a fewer and fewer 
number of observations.  Intuitively 67% of 
observations take place in the "corridor" between +1 
and -1 standard deviations in a Gaussian world. In the 
real world, we observe between 80% and 99% of 
observations in that range –so large deviations are rare, 
yet more consequential. Note that for the conventional 
results we get in finance ["cubic"] α , about 90.2% of 
the time is spent in the [-1,+1] standard deviations 
corridor. Furthermore, with α=3, the previous ratio 
becomes 

€ 

m
σ

=
2
π

 

 

Case of a variance swap  

There is an exception to the earlier statement that 
derivatives do not depend on variance. The only 

common financial product that depends on L
2 

is the 
"variance swap": a contract between two parties 
agreeing to exchange the difference between an initially 
predetermined price and the delivered variance of 
returns in a security. However the product is not 
replicable with single options.  

The exact replicating portfolio is constructed [Gatheral, 
2006] in theory with an infinity of options spanning all 
possible strikes, weighted by K-2 , where K is the strike 
price. 

 

However, to turn this into practice in the real world  
requires buying an infinite amount of options of a strike 
K approaching 0, and an inifinitesimal amount of 
options with strike K approaching infinity. In the real 
world, strikes are discrete and there is a lower bound KL 
and a highest possible one KH.  So what the replication 
leaves leaves out, < KL and > KH leaves us exposed to 
the large deviations; and would cost an infinite amount 
to purchase when options have an infinite variance.  

The discrete replicating portfolio would be as follows: 
by separating the options into n strikes between KL and 
KH  incrementing with ∆K.  

 
 
 
Such portfolio will be extremely exposed to mistracking 
upon the occurrence of tail events. 
 
We conclude this section with the remark that, 
effectively, and without the granularity of the market, 
the dynamic hedging idea seriously underestimates the 
effectiveness of hedging errors –from discontinuities 
and tail episodes. As a matter of fact it plainly does not 
seem to work both practically and mathematically.  

The minimization of daily variance may be effectual in 
smoothing performance from small moves, but it fails 
during large variations. In a Gaussian basin very small 
probability errors do not contribute to too large a share 
of total variations; in a true fat tails environment, and 
with nonlinear portfolios, the extreme events dominate 
the properties.  More specifically, an occasional sharp 
move, such a "22 sigma event" (expressed in Gaussian 
terms, by using the standard deviation to normalize the 
market variations), of the kind that took place during 
the stock market crash of 1987, would cause a severe 
loss that would cost years to recover.  Define the “daily 
time decay” as the drop in the value of the option over 
1/252 years assuming no movement in the underlying 
security, a crash similar to 1987 would cause a loss of 
close to hundreds of years of daily time decay for a far 
out of the money option, and more than a year for the 
average option9.  

                                                   
9 One can also fatten the tails of the Gaussian, and get a 

power law by changing the standard deviation of the Gaussian: 
Dupire(1994), Derman and Kani (1994), Borland (2002), See 
Gastheral [2006] for a review. 
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2.2 HOW DO WE PRICE OPTIONS OUTSIDE OF THE 
BLACK-SCHOLES-MERTONFRAMEWORK?  

It is not a matter of "can". We "need" to do so once we 
lift the idealized conditions --and we need to focus on 
the properties of the errors.  

We just saw that scalability precludes dynamic hedging 
as a means to reach a deterministic value for the 
portfolio. There are of course other impediments for us 
--merely the fact that in practice we cannot reach the 
level of comfort owing to transaction costs, lending and 
borrowing restrictions, price impact of actions, and a 
well known problem of granularity that prevent us from 
going to the limit. In fact continuous-time finance 
[Merton,1992] is an idea that got plenty of influence in 
spite of both its mathematical stretching and its 
practical impossibility.  

If we accept that returns are power-law distributed, 
then finite or infinite variance matter little. We need to 
use expectations of terminal payoffs, and not dynamic 
hedging.  The Bachelier framework, which is how 
option theory started, does not require dynamic 
hedging. Derman and Taleb (2005) argue how one 
simple financing assumption, the equality of the cost-
of-carry of both puts and calls, leads to the recovery of 
the Black-Scholes equation in the Bachelier framework 
without any dynamic hedging and the use of the 
Gaussian. Simply a European put hedged with long 
underlying securities has the same payoff as the call 
hedged with short underlying securities and we can 
safely assume that cash flows must be discounted in an 
equal manner. This is common practice in the trading 
world; it might disagree with the theories of the Capital 
Asset Pricing Model, but this is simply because the 
tenets behind CAPM do not appear to draw much 
attention on the part of practitioners, or because the 
bulk of tradable derivatives are in fixed-income and 
currencies, products concerned by CAPM. Futhermore,  
practitioners, are not concerned by CAPM (see Taleb, 
1997, Haug, 2006, 2007). We do not believe that we 
are modeling a true expectation, rather fitting an 
equation to work with prices. We do not “value”. 
Finally, thanks to this method, we no longer need to 
assume continuous trading, absence of discontinuity, 
absence of price impact, and finite higher moments. In 
other words, we are using a more sophisticated version 
of the Bachelier equation; but it remains the Bachelier 
(1900) nevertheless. And, of concern here, we can use 
it with power laws with or without finite variance.  

 

2.2 WHAT DO WE NEED? GENERAL DIFFICULTIES WITH 
THE  

APPLICATIONS OF SCALING LAWS. 
 

This said, while a Gaussian process provides a great 
measure of analytical convenience, we have difficulties 
building an elegant, closed-form stochastic process with 
scalables.  

Working with conventional models present the following 
difficulties: 

First difficulty: building a stochastic process  

For pricing financial instruments, we can work with 
terminal payoff, except for those options that are path-
dependent and need to take account of full-sample 
path.  

Conventional theory prefers to concern itself with the 
stochastic  process �����dS/S = m dt + σ dZ (S is the asset 
price, m the drift, t, is time, and σ the standard 
deviation) owing to its elegance, as the relative 
changes result in exponential limit, leading to 
summation of instantaneous logarithmic returns, and 
allow the building of models for the distribution of price 
with the exponentiation of the random variable Z, over 
a discrete period Δt, St+Δt= St ea+bz. This is convenient: 
for the expectation of S, we need to integrate an 
exponentiated variable  

 
which means that we need the density of z, in order to 
avoid finite expectations for S, to present a 
compensating exponential decline and allow bounding 
the integral. This explains the prevalence of the 
Lognormal distribution in asset price models –it is 
convenient, if unrealistic. Further, it allows working with 
Gaussian returns for which we have abundant 
mathematical results and well known properties.  

Unfortunately, we cannot consider the real world as 
Gaussian, not even Log-Gaussian, as we've seen earlier.  

How do we circumvent the problem? This is typically 
done at the cost of some elegance. Many operators 
[Wilmott, 2006] use, even with a Gaussian, the 
arithmetic process first used in Bachelier ,1900,  

 
St+Δt = a + bz + St    

which was criticized for delivering negative asset values 
(though with a minutely small probability). This process 
is used for interest rate changes, as monetary policy 
seems to be done by fixed cuts of 25 or 50 basis points 
regardless of the level of rates (whether they are 1% or 
8%).  
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Alternatively we can have recourse to the geometric 
process for a , large enough, Δt (say one day)  

 
St+Δt = St (1 + a + bz)   

Such geometric process can still deliver negative prices 
(a negative, extremely large value for z) but is more in 
line with the testing done on financial assets, such as 
the SP500 index, as we track the daily returns rt=(Pt-Pt-

1)/Pt-1 in place of log(Pt /Pt -1). The distribution can be 
easily truncated to prevent negative prices (in practice 
the probabilities are so small that it does not have to be 
done as it would drown in the precision of the 
computation).  
Second difficulty: dealing with time 
dependence  

We said earlier that a multifractal process conserves its 
power law exponent across timescales (the tail 
exponent a remains the same for the returns between 
periods t and t+Δt, independently of Δt ). We are not 
aware of an elegant way to express the process 
mathematically, even computationally --nor can we do 
so with any process that does not converge to the 
Gaussian basin. But for practitioners, theory is not 
necessary tricks. However this can be remedied in 
pricing of securities by, simply, avoiding to work with 
processes, and limiting ourselves to working with 
distributions between two discrete periods. Traders call 
that "slicing" [Taleb, 1997], in which we work with 
different periods, each with its own sets of parameters. 
We avoid studying the process between these discrete 
periods.  

 

3- Concluding Remarks  

This paper outlined the following difficulties: working in 
quantitative finance, portfolio allocation, and derivatives 
trading while being suspicious of the idealizations and 
assumptions of financial economics, but avoiding some 
of the pitfalls of the econophysics literature that 
separate models across tail exponent  α=2, truncate 
data on the occasion, and produce results that depend 
on the assumption of time independence in their 
treatment of processes. We need to find bottom-up 
patches that keep us going, in place of top-down, 
consistent but nonrealistic tools and ones that risk 
getting us in trouble when confronted with large 
deviations. We do not have many theoretical answers, 
nor should we expect to have them soon. Meanwhile 
option trading and quantitative financial practice will 
continue under the regular tricks that allow practice to 
survive (and theory to follow).  
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