Deriving Book Sales From Rank

N. N. Taleb

I was priviledged to get access to a database with cumulative sales for editions in print that had at least one unit sold that particular week (that is, conditional of the specific edition being still in print). I fit a powerlaw with tail exponent $\alpha \simeq 1.3$ for the upper 10% of sales (graph), with $\mathrm{N}=30 \mathrm{~K}$. Using the Zipf variation for ranks of powerlaws, with r_{x} and r_{y} the ranks of book x and y, respectively, S_{x} and S_{y} the corresponding sales

$$
\frac{S_{x}}{S_{y}}=\left(\frac{r_{x}}{r_{y}}\right)^{-\frac{1}{\alpha}}
$$

So for example if the rank of x is 100 and y is $1000, x$ sells $\left(\frac{100}{1000}\right)^{-\frac{1}{1.3}}=5.87$ times what y sells.
Note this is more robust in deriving the sales of the lower ranking edition $\left(r_{y}>r_{x}\right)$ because of inferential problems in the presence of fat-tails.

Technical Footnote: this works best for the top 10,000 books, but not quite the top 20 (because the tail is vastly more unstable). Further, the effective α for large deviations is lower than 1.3. But this method is robust as applied to rank.

