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This is a second technical companion to the essay On Robustness and 
Fragility in the second edition of The Black Swan (a follow up the Fourth 
Quadrant). It makes the distinction between fragile an robust to model (or 
representational) error on the basis of convexity.  It also introduces a 
simple practical method to measure (as an indicator of fragility) the 
sensitivity of a portfolio (or balance sheet) to model error. 

 
I. BACKGROUND1 

The central idea in The Black Swan is about the limits in 
the knowledge about of small probabilities, both 
empirically (interpolation) and mathematically 
(extrapolation)2, and its consequence. This discussion 
starts from the basis of the isolation of the "Black Swan 
domain", called the "Fourth Quadrant"3, a domain in 
which 1) there is dependence on small probability 
events,  and 2) the incidence of these events is 
incomputable.  The Fourth Quadrant paper cursorily 
mentioned that there were two types of exposures, 
convex and concave and that we need to "robustify"4 
though convexification. This discusses revolves around 
convexity biases as explaining the one-way failure of 
quantitative methods in social science (one-way in the 
sense that quantitative models in social science are 
worst than random: their errors go in one direction as 
they tends to fragilize)5. 

                                                   
1 This paper is slightly more technical than the July 14, 

2010 Oxford BT Lecture. I thank Bent Flyvbjerg for help. I also 
thank my former student and teaching assistant Asim 
Samiuddin (my best student ever) for his remarkable work in 
formatting my improvised lectures and integrating the student 
questions into them. Most effective have been the conversation 
spanning 16 years with my collaborator and advisor Raphael 
Douady with whom I am writing more formal mathematical 
papers on similar issues. 

Note that academics and other nerds that want to provide 
a critical comment on my work should use this paper and the 
Fourth Quadrant, not my writing style in The Black Swan 
unless they want to do literary criticisms. 

2 It took a long time but it looks like I finally managed to 
convince people that the Black Swan is not about Fat Tails 
(that's the Grey Swan), but incomputability of small probability 
events. 

3 Taleb(2009). 
4 At the "Hard Problems in Social Science" symposium, 

Harvard, April 2010, I presented "what to do in the 4th Q as 
the hard problem". 

5 Finance professors involved in investment strategies 
tend to blow up from underestimation of risks in an patently 
nonrandom way (Taleb, 2010). This explains why. 

This note discusses the following matters not present in 
the literature: 

• The notion of model error as a convex or 
concave stochastic variable. 

• Why deficit forecasting errors are biased in 
one direction. 

• Why large is fragile to errors. 
• Why banks are fragile. 
• Why economics as a discipline made the 

monstrously consequential mistake of treating 
estimated parameters as nonstochastic 
variables and why this leads to fat-tails even 
while using Gaussian models. 

• The notion of epistemic uncertainty as 
embedded in model errors. 

• Simple tricks to compute model error. 

II. INTRODUCTION: DON'T CROSS A RIVER THAT IS 
ON AVERAGE FOUR FEET DEEP 

How many times have you crossed the Atlantic —with a 
nominal flying time of 7 hours— and arrived 1, 2, 3, or 
6 hours late? Or even a couple of days late, perhaps 
owing to the irritability of some volcano. Now, how 
many times have you landed 1, 2, 3, 6 hours early? 
Clearly we can see that in some environments 
uncertainty has a one way effect: extend expected 
arrival time6.  

Simply, this comes from a convexity effect. In this 
discussion I will integrate explicitly the results of my 
lifetime of work as a derivatives trader, someone who 
works with nonlinear payoffs, and only with second and 

                                                   
6 I adjust for a technicality for hair slicing probabilists, 

that the true expected arrival time is infinite, simply because of 
the very small probability of never getting there owing to a 
plane crash. So to be more rigorous, my expectation operator is 
slightly modified, we would be talking of expected delay time 
conditional on eventually arriving to destination. 
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third order (or even higher) terms, and reframe the 
notion of robustness proposed in the postscript essay to 
The Black Swan7, in terms of optionality and convexity 
of payoffs.  

Missing Effects: The study of model error is not to 
question whether a model is precise or not, whether or 
not it tracks reality; it is to ascertain that the errors 
from the model don't have missing higher order terms 
that cause severe biases in one direction. Here we can 
see that uncertainty about the world will, in expectation 
lead to a longer arrival time. 

Small Probabilities: Another application explains why 
I spent my life making bets on unlikely events, on 
grounds of incompleteness of models. Assume someone 
tells you that the probability of an event is 0. But you 
don't trust his computation. Because a probability 
cannot be lower than 0, even in Oxford, your expected 
probability should be higher, at least higher than the 
expected error rate in the computation of such 
probability. Model error increases small probabilities in 
a disproportionate way (and accordingly decreases 
large probabilities). The effect is only neutral for 
probabilities in the neighborhood of .5. 

Convex function and Jensen's Inequality: I define 
a convex function as one with a positive second 
derivative, but this is a mathematical construct that 
does not translate well into practice. So, more 
practically, convexity over an interval Δx satisfies the 
following inequality:  

1
2
f (x + Δx) + f (x − Δx)[ ] > f (x)  

or more generally a linear combination of functions of 
points on the horizontal axis (the x) is higher than the  
function of linear combinations8. A concave function is 
the opposite. By Jensen's inequality, if we use for 
function the expectation operator, then the expectation 
of an average will be higher than the average of 
expectations.  

E f (ω∑ i
Xi )) > ω∑ i

E f (Xi ))  
For example, take a conventional die (six sides) and 
consider a payoff equal to the number it lands on. The 

expected (average) payoff is  
1
6 i

1

6

∑ = 3 12 . Now consider 

that we get the squared payoff, 
1
6 i2

1

6

∑ = 916 = 15.1666 , 

while 
1
6 i

1

6

∑⎛
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⎞
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2

= 12 1
4 , so, since squaring is a convex 

                                                   
7 Taleb (2010). 
8  We will see further down that convexity can be just 

local. 

function, the average of a square payoff is higher than 
the square of the  average payoff.9 

III. TWO TYPES OF VARIATIONS (OR PAYOFFS) 

Define the two types of payoffs for now, with a deeper 
mathematical discussion to come later.  

 

 

Figure 1 Concave payoff through time, with 
respect to a source of variation; or concave 
errors from left-skewed distributions. 

 

Concave to variations and model error: when 
payoff is negatively skewed with respect to a given 
source of variations; the shocks and errors can affect a 
random variable in a negative way more than a positive 
way, as in Figure 1. It is the equivalent of being short 
an option somewhere, with respect of a possible 
parameter. As we will see, even in situations of short 
an option, there may be an additional source of 
concavity. A concave payoff (with respect to a source of 
variation) would have an asymmetric distribution with 
thicker left-tail. 

A conventional measure of skewness is by taking the 
expectation  of the third moment of the variable, 
x3,which necessitates finite moments E[xm], m>2, or 
adequacy of the L2 norm which is not the case with 
economic variables. I prefer to use the symmetry of 
measures of shortfall, i.e. expectation below a certain 

threshold K,  x f (x) dx
−K

∫ compared to x f (x) dx
K
∫ , K 

being a remote threshold for x the source of variation. 

Convex to variations and model error: the 
opposite, as shown in Figure 2. 

                                                   
9 An interesting application, according to Art de Vany who 

applies complexity theory to many aspects of human life, is in 
diet: researchers in nutrician are only concerned with 
"average" calories consumed, not distribution; a random and 
volatile feeding (feast or famine style) will less fattening than a 
steady one owing to concavity effects. 
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Note that whatever is convex to variations is therefore 
convex to model error –given the mathematical 
equivalence between variations and epistemic 
uncertainty.  

Thus as an illustration of the payoffs in Figure 1, take 
the distribution of financial payoffs through time; a 
portfolio that has a floor set at K would have the 

downside shortfall S = x f (x) dx
−K

∫  equaling 0. I have 

been calling such operation the "robustification" or 
"convexification" of the portfolio, making it immune to 
any parameter used in the computation of f(x). 

 

 

 

Figure 2 Convex payoff through time, or convex 
errors. 

The typical concavity, and the one that I spent my life 
immersed in, is the one with respect to small 
probabilities, as will be discussed a bit later. 

Mixed Payoffs: 

As shown in Figures 3 and  4, Convexity can be local, 
that is, only present for a Δx of a certain size; it may 
become concave for larger Δx, or vice versa. So more 
technically convexity always needs to be attached to a 
certain size Δx; an infinitesimal Δx would not work in 
practice. Many financial institutions had the illusion of 
convexity, as they were so for small variations, when in 
fact they were not for large disturbances, "tail events". 

 

Figure 3 From Dynamic Hedging, Taleb(1997), 
most payoffs are mixed. 

 

 

Figure 4 Convexity can be just local for a small 
or medium size variation, which is why 
measures need to be broad and fill the tails. 
Most banks have fallen for this trap: the banking 
system accumulated concavity where it was 
invisible. 

Robustness and Convexity: As we can see from 
Figure 2, convex systems will mostly take small insults, 
for massively large gains, concave ones will appear 
more stable. 

While linear payoffs may appear to be robust, two 
points:1) linear payoffs are rare, 2) we are never sure 
that the payoff is truly linear, particularly when it comes 
to hidden parameters or incompleteness of models —
many nonlinear payoffs have been mistaken for linear 
ones. 

IV. COMPARATIVE TABLEAU OF ROBUSTNESS 

This document will generalize to cover fragility across 
all these domains using the same notion of fragility to 
perturbations or representational errors. This is a rapid 
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presentation; every entry will be explained in later 
sections. 

 
 

FRAGILE 

 

 

ROBUST 

Optimized 

 

Includes 
Redundancies 

Short options Long options 

Model Heuristic 

Rationalism  
(economics modeling) 

Empiricism/Reliance 
on time tested heuristics 

Directed search Tinkering (convex 
bricolage) 

Nation state  

--centralized 

 

City State  

-- decentralized 

Debt Equity 

Public Debt Private Debt 

Large Small 

Agent managed Principal managed 

Monomodal Barbell 

Derivative Primitive 

Banks Hedge funds 

Kindle/Electronic 
files 

Book 

Man-designed 
(Craig Venter-style 
intervention) 

Evolution 

Positive heuristics Negative heuristics 

Dr John Fat Tony 

V. WHERE ERRORS ARE SIGNIFICANT 

     Projects: This convexity explains why model error 
and increased uncertainty lengthens rather than reduce 
expected projects costs and duration. Prof Bent 
Flyvbjerg, thanks to whom I am now here, has shown 
ample empirical evidence of that effect. 

     Deficits: Convexity effects explain why uncertainty 
lengthens, doesn't shorten expected deficits. Deficits 
are convex to model error; you can easily see it in 
governments chronic underestimation of future deficits. 
If you run into anyone in the Obama administration, 
particularly Larry Summers, make them aware of it —
they don't get the point.  

     Economic Models: Something the economics 
establishment has been missing is that having the right 
model (which is a very generous assumption), but 
being uncertain about the parameters will invariably 
lead to an increase in model error in the presence of  
convexity and nonlinearities.  

As an illustration, say we are using a simple function 

f x,α( ) , where α is supposed to be the average 

expected rate α = α φ(∫ α ) dα . The mere fact that α 

is uncertain might lead to a bias if we perturbate from 
the outside (of the integral). Accordingly, the convexity 
bias is easily measured as  

f (α, x)φ(∫ α ) dα − f ( α φ(α ) dα∫ , x)  

As an example let us take the Bachelier-Thorp option 
equation (often called in the literature the Black-
Scholes-Merton formula10), an equation I spent 90% of 
my adult life fiddling with. I use it in my class on model 
error at NYU-Poly as an ideal platform to explain the 
effect of assuming a parameter is deterministic when in 
fact it can be stochastic11. 

A call option (simplifying for absence of interest rate12) 
is the expected payoff: 

C(S0 ,K ,σ ,t) = (S − K )
K

∞

∫ Φ(S0 ,µ,σ t ) dS  

Where , where Φ is the Lognormal distribution, So is the 
initial asset price, K the strike, σ the standard deviation, 
and t the time to expiration. Only S is stochastic within 
the formula, all other parameters are considered as 
descending from some higher deity, or estimated 
without estimation error.  

The easy way to see the bias is by producing a nested 
distribution for the standard deviation σ, say a 
Lognormal with standard deviation V then the true 
option price becomes, from the integration from the 
outside: 

                                                   
 10 See Haug and Taleb (2010). 
11 I am using deterministic here only in the sense that it is 

not assumed to obey a probability distribution; Paul 
Boghossian has signaled a different philosophical meaning to 
the notion of  deterministic. 

12 The technique (which I will use in the rest of the 
discussions) is called a change of probability measure, to 
cancel the effect of the interest rate variable, by assuming it is 
integrated as a numeraire, not ignore its existence --Geman et 
al. 



 

  
 
©  Copyright 2010 by N. N. Taleb.  

5 

C(S0 ,K ,σ ,t)∫ f (σ ) dσ  

The convexity bias is of course well known by option 
operators who price out-of-the-money options, the 
most convex, at some premium to the initial Bachelier-
Thorpe model, a relative premium that increases with 
the convexity of the payoff to variations in σ. 

Corporate Finance: In short, corporate finance seems 
to be based on point projections, not distributional 
projections; thus if one perturbates cash flow 
projections, say, in the Gordon valuation model, 
replacing the fixed —and known— growth by 
continuously varying jumps (particularly under fat tails 
distributions), companies deemed "expensive", or those 
with high growth, but low earnings, would markedly 
increase in expected value, something the market 
prices heuristically but without explicit reason. 

Portfolio Theory: The first defect of portfolio theory 
and every single theory based on "optimization" is 
absence of uncertainty about the source of parameters 
--while these theorists leave it to the econometricians 
to ferret out the data, not realizing the inconsistency 
that an unknown parameter has a stochastic character. 
Of course the second defect is the use of thin-tailed 
idealized probability distributions. 

VI. DISTRIBUTIONAL FAT TAILS AND CONVEXITY 

I've had all my life much difficulty explaining the 
following two points connecting dots: 

 1) that Kurtosis or the fourth moment was 
equivalent to the variance of the variance; that the 
square variations around E[x2] are similar to E[x4]. 

 2)  that the variance (or any measure of 
dispersion) for a probability distribution maps to a 
measure of ignorance, an epistemological concept. So 
uncertainty of future parameters increases the variance 
of it; hence uncertainty about the variance raises the 
kurtosis, hence fat tails. Not knowing the parameter is a 
central problem.  

The central point behind Dynamic Hedging (1997) is 
the percolation of uncertainty across all higher 
moments; so if one has uncertainty about the variance, 
with a rate of uncertainty called, say V(V) (I dubbed it 
"volatility of volatility"); the higher V(V), the higher the 
kurtosis, and the fatter the tails. Further, if V(V) had a 
variance called V(V(V)), the third order variance, which 
in turn had uncertainty, all the way down to all orders, 
then, simply, one ends with Paretan tails. I had never 
heard of Mandelbrot, or his link of Paretan tails with 
self-similarity, and I needed no fractal argument for 
that. The interesting point is that mere uncertainty 

about models leads immediately to the necessity to use 
power laws for epistemic reasons13. 

Another approach is through the notion of epistemic 
infinity. As explained in The Black Swan, Taleb (2010), 
a finite upper bound for a variable may exist, but since 
we do not know where it is, "how high (low)", it  needs 
to be accordingly treated as infinite. So there may be a 
point where distributions become thin-tailed, and cease 
to be scalable, but in the absence of the knowledge 
about them, we need to consider them as fat tailed to 
infinity, hence power laws. 

We already saw from the point that options increase in 
value, with an effect called the "volatility smile"14.  

 

VII. MODEL ERRORS ARE FAT-TAILED EVEN IN THE 
GAUSSIAN (THIN-TAILED) WORLD15 

First, let me show how tail exposures are extremely 
sensitive to model error regardless of the distribution 
used —something completely missed in the literature. 

Let us start with the mild case of the Gaussian 
distribution (without even fattening the tails). Take a 
measure ζ of shortfall, here:  

 

 

where f(x) is Gaussian with mean µ and standard 
deviation σ.  

We are not using the measure to estimate, but for 
higher order effects to gauge fragility —a procedure 
that is not affected by the reliability of the estimate. 

Difference with the ordinary VAR: This measure 
deviates from the less rigorous ordinary Value-at-Risk 
(VAR) since VAR sets the K for which the probability  

f (x) dx
−∞

−K

∫ corresponds to a fixed percentage, say 

1%. Aside from the difficulty in computation, and the 
limitation of the estimation of small probabilities, it 

                                                   
13 Typical derivations of power laws are: hierarchies 

(Cantor sets) multiplicative processes, including preferential 
attachment /cumulative advantage (Zipf, Simon), entropy 
(Mandelbrot), dimentional constraints, critical points, etc. But 
I have never seen the epistemic issue ever presented in spite of 
his dominance of an operator's day to day activity.  

 
14 By the Breeden-Litzenberger argument, we can see that 

option prices produce risk-neutral probability distributions for 
the underlying assets, so we can look at the problem in the 
inverse direction. 

15 This method was proposed to the staff of the Bank of 
England on Jan 19 2007 as an indicator of robustness for a 
portfolio. I do not believe that anything was done on that. 
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severely ignores fat-tail effects of the expected loss 
below the threshold K. Furthermore it cannot be used 
for the estimation of model fragility. 

Now take the function γ showing the relative convexity 
multiplier from changes in σ for a total uncertainty δ ( a 
δ=. 25 means σ can be 25 % lower or 25% higher; a 
γ=1 is no effect, a γ=2 is the doubling the shortfall). 
With δ in [0,1[, and assuming for simplicity µ=0, 

which yields to a closed form solution 

 

The shocking result is that for 10 standard deviations 
(that is, routine events), a 25% uncertainty about σ 
leads to a multiplication of the mass in the tail, causing 
the underestimation of the risk by a factor of 107. I 
wonder why those using methods such as Value at Risk 
(VAR) can be so irresponsibly blind! 

Table 1: Underestimation of shortfall in excess 
of K from relative perturbations of 25% up or 
down with the parameter σ in a simple Gaussian 
world 

K, in Standard 
deviations  

Underestimation of 
shortfall  

0 0 

1 0 

2 0.36 

3 2.16 

4 10.13 

5 55.26 

6 406 

7 4,230 

8 62,942 

9 106 

10 4 107 

 

The worrisome fact is that a perturbation in σ extends 
well into the tail of the distribution in a convex way; a 
portfolio that is sensitive to the tails would explode.  
That is, we are still here in the Gaussian world! Such 
explosive uncertainty isn't the result of fat tails in the 
distribution, merely small imprecision about a future 

parameter. It is just epistemic! So those who use these 
models while admitting parameters uncertainty are 
necessarily committing a severe inconsistency16 17.  

Of course, uncertainty explodes even more when we 
replicate conditions of the nonGausian real world upon 
perturbating tail exponents, see Taleb (2009). 

VIII. HOW TO MEASURE MODEL ERRORS WITH SIMPLE 
PERTURBATIONS 

In general, most of the sensitivity to model error in a 
portfolio can be captured with the following procedure 
I've been using for a long time on portfolios containing 
nonlinear securities.  

First step, calculate the expected Shortfall ζ at 
one σ (which is usually done by bank risk 
management using the same tools to compute 
the VAR18). Then perturbate a Δσ at different 
levels (10%, 25%, 50%) to capture the higher 
moment effects; a portfolio that experiences 
variations will be sensitive to model error; but 
we will not know whether it is robust or 
fragile.  

Second step, compare the performance at 
+Δσ and -Δσ for detection of convexity 
effects: if profits exceed losses for equivalent 
Δσ, then the portfolio is convex and robust; 
otherwise it is deemed fragile.  

One limitation is that this only reveals the sensitivity up 
to the 4th moment; not higher ones, so a portfolio 
containing very remote payoffs might not react for 
small Δσ, only larger ones (as we said, convexity is 
local). For that, the remedy is to redo it for larger and 
larger Δσ, or, more difficult, have recourse to power 
laws by varying the α exponent (this would fill the tail 
all the way to the asymptote). 

This method is for dimension 1; it can be generalized 
for larger dimensions as one needs to perturbate the 
covariance matrix Σ, without violating the positive-
definite character (there are many techniques from 
decomposition techniques in which one can perturbate 
the principal components or the factors). 

                                                   
16 A conversation with Paul Boghossian convinced me that 

philosophers need to figure out a priori what others need 
empiricism for, merely by reasoning. This argument just 
outlined is entirely an armchair one, does not even question 
the mismatch of the formula to the real world or the choice of 
probability; it just establishes an inconsistency from within the 
use of such models if the operator does not consider that the 
parameters descended from some unquestionable deity. 

17 This, along with the other arguments in Taleb (2010) 
further shows the defects of the notion of "Knightian 
uncertainty", since all tails are uncertain under the slightest 
perturbation. 

18 The problem of the raw VAR is probabilistic: it does not 
fill-in the tail. 
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IX. WHY LARGE IS CONCAVE, HENCE FRAGILE, THE 
CASE OF SQUEEZES 

The Notion of Squeeze: Squeezes are situations in 
which an operator is obligated to perform an action 
regardless of price, or with little sensitivity to price. It 
can cause a concave payoff since price sensitivity is low 
given the necessity of the action. Say a person needs 
water or some irreplaceable substance; there are no 
choices and no substitutes. He will drive the price 
upwards as a "price for immediacy"19 20.  

There have been many theories of why size is ugly (or 
small is beautiful), but these theories are not based on 
statistical notions and squeezes, the distributions of 
shocks from the environment, rather on qualitative 
matters or organizational theories in management 
characteristically lacking in scientific firmness. Even in 
biology, the problem has been missed completely. For 
instance one can argue the absence of land mammals 
larger than the elephant, but on some theory of ratios 
and physical limitations; but they don't explain absence 
of much larger animals; these biological limits are 
above the actual size we witness. My point here is that 
the environment delivers resources stochastically, with 
fragility to squeezes —an elephant needs more water 
than a mouse, and would, figuratively, pay up for it. 

Naive optimization may lead us to believe in economies 
of scale –since it ignores the stochastic structure that 
results from aggregation of entities, and the associated 
vulnerabilities and their costs. However, under a 
nonlinear loss function, increased exposure to rare 
events may have the effect of raising the costs of 
aggregation while giving the impression of benefits –
since the costs will be borne during rare, but large-
impact events. This result is general; it holds not just 
for economic systems, but for biological and mechanical 
ones as well. 

Hidden Risks: Define hidden risks as an unanticipated 
or unknown exposure to a certain stochastic variable 
that elicits immediate mitigation. These stochastic 
shocks can be called “Black Swan” effects, as they are 
not part of the common risks foreseen by the institution 
or the entity involved. These can be hidden risks by 
rogue traders, miscalculation of risk positions 
discovered , or booking errors. An  “unintended 
position” is a hidden risk from the activities of, say, a 
rogue trader that escapes the detection by the bank 
officials, and needs to be liquidated as it makes the 
total risk larger than allowed by the capital of the 
institution. This can be later generalized to any form of 
unintentional risk –errors commonly known in the 
business as “long v/s long” or “short v/s short” –
positions that were carried on the books with a wrong 

                                                   
19 Taleb and Tapiero (2010) 
20 For the notion of price for immediacy, Grossman & 

Miller (1988) 

sign and constitute the nightmare for operational risk. 
The vicious aspect of these “unintended positions” is 
that the sign (long or short) does not matter; it is 
necessary to reduce that risk unconditionally. Hence a 
squeeze. 

Companies get larger through mergers and industries 
become concentrated, assuming the notion of 
“economies of scale”, and computing the savings from 
the cost reductions and such benefits of scale. 
However, this does not take into account the effect of 
an increase of risks of blowups –in fact, under any form 
of loss or error aversion, and concave execution costs, 
the gains from the increase in size should show a 
steady improvement in performance, punctuated with 
large and more losses, with a severe increase in 
negative skewness.  

Consider a recent event, known as the Kerviel Affair, 
which we simplify as follows.  Société Génerale lost 
close to $7 billion, around $6 billion of which came 
mostly from the liquidation costs  of the positions of 
Jerome Kerviel, a rogue trader, in amounts around $65 
billion (mostly in equity indices). The liquidation caused 
the collapse of world markets by close to 12%. Indeed 
we stress that the losses of $7 billion did not arise from 
the risks but from the loss aversion and the fact that 
execution costs rise per unit. 

Simple Example –Simplification of 

The Kerviel Case 

Consider the following two idealized situations. 

Situation 1: there are 10 banks with a 
possible rogue trader hiding 6.5  billions, and 
probability p for such an event for every bank 
over one year.  The liquidation costs for $6.5 
billion are negligible. There are expected to be 
10 p such events but with total costs of no 
major consequence. 

Situation 2: One large bank 10 times the 
size, similar to the more efficient Société 
Génerale, with the same probability p, a larger 
hidden position of $65 billion. It is expected 
that there will be p such events, but with $6.5 
losses per event. Total expected losses are p 
$6.5 per time unit –lumpier but deeper and 
with a worse expectation. 

We generalize next by assuming that the hidden 
positions (in absolute value) are power-law distributed 
and can take any positive value rather than a simple 
$6.5 or $65 billion. Further we generalize from the idea 
of hidden position of a rogue trader to hidden excess or 
deficit in inventory that necessitates action, an 
"unintended exposure". 

General Mathematical Derivations: Our random 
variable X is the “unintended exposure”.  Assume the 
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size of this unintended position is proportional to the 
capitalization of the institution –for smaller entities 
engage in smaller transactions than larger ones. So we 
are considering the splitting of the risk across N 
companies, with maximal concentration at N=121. 

Probability Distribution: We use for probability 
distribution the variable of all unintended risk ∑Xi where  
Xi are independent random variables, simply scaled as 
Xi =X/N. With k the tail amplitude and α the tail 
exponent,  

π(k, α, X) = α kα x-1-α 

The N-convoluted Pareto distribution for the unintended 
total position N ∑Xi: 

π(k/N, α, X)N 

where N is the number of convolutions for the 
distribution. The mean of the distribution, invariant with 
respect to N, is α k /(α-1). 

 

Losses From Squeeze: For the loss function, take 
C[X]=  – b Xβ , where squeezing costs is a convex 
function of X —the larger X, the more one needs to pay 
up for it. 

Assume for simplicity b=1. We take 4 scenarios that 
should produce various levels of convexity: β= 1 (the 
linear case, in which we would expect that the total 
losses would be invariant with N), β= 2,3,4,5 the 
various levels of concavity. 

 

 

Figure 5- Various loss functions of increasing 
convexity: -b x β for b=1, a=2,...,5 

 

Resulting distribution of losses: 

Change of stochastic variable: the loss y=C[X] has for 
distribution: 

                                                   
21 The limiting case N=1 corresponds to a mega-large 

institution commonly known as "government". 

π[C-1[x]]/C’[C-1[x]] 

It follows a Pareto Distribution with tail amplitude kβ 
and tail exponent α/β  

� 

L1(Y ) = α
β
KαY −1−α /β

 

which has for mean 

� 

k βα
α −β

 

For the Sum: Under convolution of the probability 
distribution, in the tails, we end up with asymptotic tail 
amplitude N (k/N)α, (Bouchaud and Potters, 2003, 
section 2.22). 

For the convoluted sum of N firms, the asymptotic 
distribution becomes: 

� 

LN (Y ) = N α
β

K
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
α

Y −1−α /β  

  

with mean (owing to additivity):  

� 

M(α,β,k,N) =
N k

N
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
β

α

α −β
 

Next, we check the ratio of losses in the tails for 
different values of the ratio of β over α 

� 

M(α = 3,β /α,k,N =1)
M(α = 3,β /α,k,N =10)

 

 

Figure 6 ratio of losses for N=1 entity/ Losses 
for N=10 entities as β increases. As β reaches α, 
the expectation of the losses becomes infinite. 

Squeezes and Redundancy: We can use the exact 
same equation for inventory management C[X]=  – b 
X β and assume X is the difference between total target 
inventory, and needed inventory. The convexity of the 
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slope shows how excess inventory, or, in general, 
whatever lowers squeezability constitutes an insurance. 

Price of Convexity: Convexity is priced, in the L2 
norm, from a result of the stochastic differential 

equation, 
∂f
∂t

= − 1
2
∂2 f
∂X 2 , where the first derivative is 

"time decay" or "premium erosion", and the second the 
convexity effect. But more practically it can priced 
probabilistically by summing up payoffs.  

X. HOW DO PEOPLE SELL LEFT TAILS? 

1) Outside finance: 

 politics 
 managing large organizations under an agency 

problem (steady one-way bonus) 
 any job in which performance is cosmetically 

evaluated with potential hidden tail risks 
 people worried about their reputation of 

"steady earners" 

  

2) Examples of directly negatively skewed bets in 
finance: 

Loans and Credit-Related Instruments: You lend to an 
entity at a rate higher than the risk-free one prevailing 
in the economy. You have a high probability to earn the 
entire interest amount, except, of course in the event of 
default where you may lose (depending on the recovery 
rate) around half your investment. The lower the risk of 
default, the more asymmetric the payoff. The same 
applies to investments in high yielding currencies that 
are pegged to a more stable one (say the Argentine 
peso to the dollar) but occasionally experience a sharp 
devaluation. 

Derivative instruments. A trader sells a contingent 
claim. If the option is out-of-the-money the payoff 
stream for such strategy is frequent profits, infrequent 
large losses, in proportion to how far out of the money 
the option is. It is easy to see in the volumes that most 
traded options are out-of-the-money22. Note that a 
“delta hedged” such strategy does not significantly 
mitigate such asymmetry, since the mitigation of such 
risk of large losses implies continuous adjustment of the 
position, a matter that fails with discontinuous jumps in 
the price of the underlying security. A seller of an out-
of-the money option can make her profit as frequent as 
she wishes, possibly 99% of the time by, say selling on 
a monthly basis options estimated by the market to 
expire worthless 99% of the time. 

Arbitrage. There are classes of arbitrage operations 
such as: 1) “merger arbitrage” in which the operator 
engages in betting that the merger will take place at a 
given probability and loses if the merger is cancelled 
(the opposite is called a “Chinese”).  These trades 
generally have the long odds against the merger. 2) 
“Convergence trading” where a high yielding security is 
owned and an equivalent one is shorted thinking that 
they converge to each others, which tends to happen 
except in rare circumstances.  

                                                   
22 See Wilmott(1998) and Taleb (1997) for a discussion of 

dynamic hedging properties for an option seller. 
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The hedge funds boom caused a proliferation of 
packaged instruments of some opacity that engage in a 
variety of the above strategies –ones that do let 
themselves be revealed through naive statistical 
observation.  

2)  Example  of comparatively skewed bets:   

Covered Calls Writing: Investors have long engaged in 
the “covered write” strategies in which the operator 
sells an option against his portfolio which increases the 
probability of a profit in return for a reduction of the 
upside.  There is an abundant empirical literature on 
covered writes (see Board, Sutcliffe and Patrinos, 2000, 
for a review, and Whaley, 2002 for a recent utility-
based explanation) in which fund managers find gains 
in utility from capping payoffs as the marginal utility of 
gains decreases at a higher asset price. Indeed the fact 
that individual investors sell options at cheaper than 
their actuarial value can only be explained by the utility 
effect. As to a mutual fund manager, doing such 
“covered writing” against her portfolio increases the 
probability of beating the index in the short run, but 
subjects her to long term underperformance as she will 
give back such outperformance during large rallies.  

 

XI. MORAL HAZARD & HIDDEN LEFT TAIL 

Why are we suckers for hidden left tails exposures? The 
combination of moral hazard and psychological 
confusion about statistical properties from small 
sample, two effects: crooks of randomness and fools of 
randomness23. 

Taleb (2004a, 2004b) presented the interplay of 
psychological issues related to size, to the  properties of 
a Left-skewed Payoff stream:  

Property 1: Camouflage of the mean and variance.  

The true mean of the payoff is different from 
the median, in proportion to the skewness of 
the bet. A typical return will, say, be higher  
than the expected return. It is consequently 
easier for the observer of the process to be 
fooled by the true mean particularly if he 
observes the returns without much ideas 
about the nature of the underlying generator. 
But things are worse for the variance as most 
of the time it we be lower than the true one 
(intuitively if a shock happens 1% of the time 
then the observed variance over a time 
window will decrease between realizations 
then sharply jump after the shock).  

Property 2: Sufficiency of sample size.  

                                                   
23 I owe the metaphor crooks of randomness to Nicolas 

Tabardel. 

It takes a considerably longer sample to 
observe the properties under a skewed 
process than otherwise. Take a bet with 99% 
probability of making G and 1% probability of 
losing L; 99% of the time the properties will 
not reveal themselves –and when they do it is 
always a little late as the decision was made 
before. Contrast that with a symmetric bet 
where the properties converge rather rapidly. 

Property 3: The smooth ride effect.  

As we said the observed variance of the 
process is generally lower than the true 
variance most of the time. This means, simply, 
that the more skewness, the more the process 
will generate steady returns with smooth ride 
attributes, concentrating the variance in a brief 
period, the brevity of which is proportional to 
the variance. In another word, an investor 
has, without a decrease in risk, a more 
comfortable ride most of the time, with an 
occasional crash. 

BELIEF IN THE LAW OF SMALL NUMBERS AND 
OVERCONFIDENCE 

The first hint of an explanation for the neglect of the 
small risks of large losses comes from the early 
literature on behavior under uncertainty. Tversky and 
Kahneman (1971) writes “We submit that people view a 
sample randomly drawn from a population as highly 
representative, that is, similar to a population in all 
essential characteristics”. The consequence is the 
inductive fallacy: overconfidence in the ability to infer 
general properties from observed facts, “undue 
confidence in early trends” and the stability of observed 
patterns and deriving conclusions with more confidence 
attached to them than can be warranted by the data. 
Worst, the agent finds causal explanations or perhaps 
distributional attributes that confirm his undue 
generalization . 

It is easy to see that the “small numbers” gets 
exacerbated with skewness since most of the time the 
observed mean will be different from the true mean 
and most of the time the observed variance will be 
lower than the true one. Now consider that it is a fact 
that in life, unlike a laboratory or a casino, we do not 
observe the probability distribution from which random 
variables are drawn: We only see the realizations of 
these random processes.  It would be nice if we could, 
but it remains that we do not measure probabilities as 
we would measure the temperature or the height of a 
person. This means that when we compute probabilities 
from past data we are making assumptions about the 
skewness of the generator of the random series –all 
data is conditional upon a generator. In short, with 
skewed packages, property 1 comes into play and we 
tend to believe what we see.  
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The literature on small numbers implies that agents 
have a compressed, narrower distribution in their minds 
than warranted from the data. The literature on 
overconfidence studies the bias from another angle by 
examining the wedge between the perception of 
unlikely events and their actual occurrence. Since Alpert 
and Raiffa (1982) agents underestimate the extreme 
values of a distribution in a surprising manner; 
violations are far more excessive than one would 
expect: events that are estimated  to happen less than 
2% of the time will take place up to 49%. There has 
been since a long literature on overconfidence (in the 
sense of agents discounting the probability of adverse 
events or making ), see Kahneman and Lovallo (1993), 
Hilton (2003). 

 “EVERY DAY IS A NEW DAY”: THE IMPLICATIONS OF  
PROSPECT THEORY 

Prospect theory  derives its name from the way agents 
face prospects or lotteries (Kahneman and Tversky, 
1979). Its central idea of is that economic agents reset 
their “utility” function to ignore, to some extent, 
accumulated performance and focus on the changes in 
wealth in their decision making under uncertainty. One 
may accumulate large quantities of wealth, but 
habituation makes him reset to the old Wall Street 
adage “every day is a new trading day”, which means 
that he will look at gains and losses from the particular 
strategy, not the absolute levels of wealth and make 
decisions accordingly. The reference point is the 
individual's point of comparison, the "status quo" 
against which alternative scenarios are compared. 
Moreover prospect theory differs from “utility theory” 
per se in the separation of decision probability from the 
“value function”.  Decision probability, or weighting 
function, has the property of  exaggerating small 
probabilities and underestimating large ones.  

 

 

It is key that prospect theory was empirically derived 
from one-shot experiments with agents subjected to 
questions in which the odds were supplied. Nor has it 
been subjected to streams of payoffs, the concerns of 
this discussion, a point to which we will return. It is the 
value function of the prospect theory that we examine 
next, not the probabilities used in the decision-making. 
The  normative neoclassical utility theory stipulates an 
increased sensitivity to losses and a decreased one to 
gains (investors would prefer negative skewness only 
for their increase but not decrease, in wealth). On the 
other hand, the value function of prospect theory 
documents a decreased sensitivity to both gains and 
losses, hence a marked overall preference for negative 
skewness. At the core, the difference is simply related 
to the fact that operators are more concerned with the 
utility of changes in wealth rather than those of the 
accumulated wealth itself, creating a preference for a 
given path dependence in the sequences of payoffs. 

The empirically derived version of utility theory presents 
asymmetric higher order properties. The Kahneman-
Tversky value-function v for changes in wealth is 
convex to in the loss domain v(L) and concave in the 
profit domain v(G). Since the second derivative of v(L) 
is positive, we have by convexity the value of a large 
loss higher than the sum of the value of losses: v(L) > 
n v(L/n). In other words the agent’s utility resides in 
incurring a sharp hit than the same amount in 
piecemeal tranches. A loss of 100 (blowup)  is better 
(from the value function standpoint) than 100 times a 
loss of 1 (bleed).  

BY comparison, the conventional Von Neuman-
Morgenstern utility of wealth (instead of payoffs), while 

Figure 7 Prospect theory shows how utility for 
losses is convex, utility for profits is concave 
(Taleb 2004a) which acts as an incentive for 
negatively skewed trades. 
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making no such distinction, results in asymmetry in 
skewness preferences: U(W) is concave for all levels of 
wealth W which makes the investor favor negative 
skewness on the right and positive skewness on the left 
for incremental changes (How? U(W+ ΔW) < 
U(W)+U(ΔW) if ΔW>0, since U’’(W) <0 for all W, and < 
otherwise).  In the domain of gains or increase in 
wealth there is an convergence between the two 
methods of viewing utility: over a single period the 
right-side utilities are both concave.  

The result here is sufficiently firm to require no 
additional testing: Prospect theory has been subjected 
to all manner of experiments and the concavity in the 
domain of losses has shown to be robust.   

 

Take an example from the parametrization of  Tversky 
and Kahneman (1992). V+(x) for x positive and V-(x) 
for x strictly negative.   

V+(x)= xα  

V-(x)= (-λ)(-x)α  

Take α=2.25, λ= .65 

 

This point is not fraught with a modicum of ambiguity –
the . Ignorance about convergence of distributions 
leads to underestimate the probabilities of large 
deviations owing to their mathematical properties, but 
there is a documented countervailing tendency to 
overestimate the small odds.  The probability weighting 
function in the Kahneman-Tversky prospect theory (see 
Tversky and Kahneman, 1992) implies that the agent, 
in his decision making, overestimates small probabilities 
and underestimates the higher ones (the ones closer to 
100). It seems to contradict the earlier effect but this 
implies that the agent knows these probabilities, which, 
in a framework of purely inductive inference, he 
doesn’t.  

Research (Barron and Erev, 2003) shows experimental 
evidence that agents underweight small probabilities 
when they engage in sequential experiments in which 
they derive the probabilities themselves. Whether this 
comes from biases in our inductive inference machinery 
or the fact that we do not handle abstract probabilities 
properly (the “risk as feeling” theories) . 

HEDONIC ADAPTATION 

The central idea behind recent research on well being is 
the existence of a set-point of happiness, to which the 
agent tends to revert after some departure –the 
Brickman and Campbell (1971) hedonic treadmill. Such 
mechanism seems to be the backbone for the research 
on happiness and economics. The idea provides an 
explanation to prospect theory, as the sensitivity 
decreases on both sides, and the agent is sensitive to 

differences rather than to absolute conditions, as he 
resets his utility curve at the origin.  

The problems, however seem to be that adaptation is 
selective and domain specific. In some cases, repetition 
or duration of a constant stimulus results in an 
increasing hedonic response  –a process the literature 
calls sensitization. The literature (Frederick and 
Loewenstein (1998)) shows evidence that there are 
some things to which we adapt rapidly: (imprisonment, 
increases in wealth, and disabilities like paralysis), 
condition to which we adapt slowly (the death of a 
loved one), and things to which we do not seem to 
adapt (noise, debilitating diseases, foods, or an 
annoying roommate).  Now the question: do people 
adapt to bleed? In other words do people increase in 
sensitivity to the pain of the “Chinese torture” 
treatment of slow losses?  

 

 


