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Abstract—Proof that under simple assumptions, such as con-

straints of Put-Call Parity, the probability measure for the

valuation of a European option has the mean of the risk-neutral

one, under any general probability distribution, bypassing the

Black-Scholes-Merton dynamic hedging argument, and without

the requirement of complete markets. We confirm that the

heuristics used by traders for centuries are both more robust

and more rigorous than held in the economics literature.

I. BACKGROUND

Option valuations methodologies have been used by traders
for centuries, in an effective way (Haug and Taleb, 2010). In
addition, valuations by expectation of terminal payoff center
the probability distribution around the "risk-neutral" forward,
thanks to Put-Call Parity. The Black Scholes argument (Black
and Scholes, 1973, Merton, 1973) is held to allow risk-neutral
option pricing thanks to dynamic hedging. This is a puzzle,
since: 1) Dynamic Hedging is not operationally feasible in
financial markets owing to the dominance of portfolio changes
resulting from jumps, 2) The dynamic hedging argument
doesn’t stand mathematically under fat tails, as it requires a
"Black Scholes world" with many impossible assumptions, one
of which requires finite quadratic variations, 3) We use the
same Black-Scholes risk neutral arguments for the valuation
of options on assets that do not allow dynamic hedging, 4)
There are fundamental informational limits preventing the
convergence of the stochastic integral.1

There have been a couple of predecessors to the present
thesis that Put-Call parity is sufficient constraint to enforce
risk-neutrality, such as Derman and Taleb (2005), Haug and
Taleb (2010), which were based on heuristic methods, robust
though deemed hand-waving (Ruffino and Treussard, 2006).
This paper uses a completely distribution-free, expectation-
based approach and proves the risk-neutral argument without
dynamic hedging, and without any distributional assumption,
with solely two constraints: "horizontal", i.e. Put-Call Parity,
and "vertical", i.e. the different valuations across strike prices
deliver a probability measure (Dupire, 1994), which is shown
to be unique. The only economic assumption made is that the
forward is tradable by cash-and-carry style arbitrage — in the

1Further, in a case of scientific puzzle, the exact formula called "Black-
Scholes-Merton" was written down (and used) by Edward Thorp in a heuristic
derivation by expectation that did not require dynamic hedging.

absence of such forward it is futile to discuss standard option
pricing.

Aside from the cash and carry arbitrage, we make no
assumption of market completeness. Options are not redundant
securities and remain so.2

II. PROOF

Define C(St0 ,K, t) and P (St0 ,K, t) as European-style call
and put with strike price K, respectively, with expiration t, and
S0 as an underlying security at times t0, t � t0 , and St the
possible value of the underlying security at time t.

Define r = 1
t�t0

R t
t0
rsds, the return of a risk-free money

market fund and � = 1
t�t0

R t
t0
�sds the payout of the asset

(continuous dividend for a stock, foreign interest for a cur-
rency).

We have the arbitrage forward price FQ
t :

FQ
t = S0

(1 + r)(t�t0)

(1 + �)(t�t0)
t S0 e

(r��)(t�t0)

(1)

by arbitrage, see Keynes 1924. We thus call FQ
t the future (or

forward) price obtained by arbitrage, at the risk-neutral rate.
Let FP

t be the future requiring a risk-associated "expected
return" m, with expected forward price:

FP
t = S0(1 +m)(t�t0) t S0 e

m (t�t0) (2)

Remark: By arbitrage, all tradable values of the forward

price given St0 need to be equal to FQ
t .

"Tradable" here does not mean "traded", only subject to
arbitrage replication by "cash and carry", that is, borrowing
cash and owning the secutity yielding d if the embedded
forward return diverges from r.

Define ⌦ = [0,1) = AK [ Ac
K where AK = [0,K) and

Ac
K = [K,1).
Consider a class of standard (simplified) probability spaces

(⌦, µi) indexed by i, where µi is a probability measure, i.e.,
satisfying

R
⌦ dµi = 1.

Theorem 1. For a given maturity T, there is a unique measure

µQ that prices European puts and calls by expectation of

2The famed Hakkanson paradox is as follows: if markets are complete
and options are redudant, why would someone need them? If markets are
incomplete, we may need options but how can we price them? This discussion
may have provided a solution to the paradox: markets are incomplete and we
can price options.



Table I
COMPARISON

Black-Scholes

Merton

Put-Call Parity

Type Continuous
rebalancing.

Interpolative
static hedge.

Market As-

sumptions

1) Continuous
Markets, no
gaps, no jumps.

1) Gaps
and jumps
acceptable.
Continuous
Strikes, or
acceptable
number of
strikes.

2) Ability to bor-
row and lend un-
derlying asset for
all dates.

2) Ability to
borrow and
lend underlying
asset for single
forward date.

3) No transaction
costs in trading
asset.

3) Low transac-
tion costs in trad-
ing options.

Probability

Distribution

Requires all mo-
ments to be finite.
Excludes slowly
varying distribu-
tions

Requires finite
1st moment
(infinite variance
is acceptable).

Market

Complete-

ness

Achieved
through dynamic
completeness

Not required (in
the traditional
sense)

Realism of

Assumptions

Low High

Convergence In probability
(uncertain;
one large
jump changes
expectation)

Pointwise

Fitness to

Reality

Only used
after "fudging"
standard
deviations per
strike.

Portmanteau,
adapted to reality

terminal payoff. This measure is risk-neutral in the sense that

it prices the forward FQ
t .

Lemma 1. For a given maturity T, there exist two measures

µ1 and µ2 for European calls and puts of the same maturity

and same underlying security associated with the valuation by

expectation of terminal payoff, which are unique such that, for

any call and put of strike K, we have:

C =

Z

⌦
fC dµ1 , (3)

and

P =

Z

⌦
fP dµ2 , (4)

respectively, and where fC and fP are (St �K)+ and (K �
St)+ respectively.

Proof. For clarity, set r and � to 0 without a loss of generality.
By Put-Call Parity Arbitrage, a positive holding of a call
("long") and negative one of a put ("short") replicates a
tradable forward; because of P/L variations, using positive sign
for long and negative sign for short:

C(St0 ,K, t)� P (St0 ,K, t) +K = FP
t (5)

necessarily since FP
t is tradable.

Put-Call Parity holds for all strikes, so:

C(St0 ,K+�K, t)�P (St0 ,K+�K, t)+K+�K = FP
t (6)

for all K 2 ⌦
Now a Call spread in quantities 1

�K , expressed as

C(St0 ,K, t)� C(St0 ,K +�K, t),

delivers $1 if St > K +�K, 0 if St < K, and the quantity
times St �K if K  St  K +�K, that is between 0 and
$1. Likewise, consider the converse argument for a put, with
�K < St.

At the limit, for �K ! 0

@C(St0 ,K, t)

@K
= �

Z

Ac
K

dµ1 (7)

by the same argument:

@P (St0 ,K, t)

@K
=

Z

AK

dµ2 = 1�
Z

Ac
K

dµ2 (8)

As semi-intervals generate the whole Borel �-algebra on ⌦,
this shows that µ1and µ2 are unique.

Lemma 2. The probability measures of puts and calls are the

same, namely for each Borel set A in ⌦, µ1(A) = µ2(A).

Proof. Combining Equations 5 and 6, dividing by 1
�K and

taking �K ! 0:

�@C(St0 ,K, t)

@K
+

@P (St0 ,K, t)

@K
= 1 (9)

for all values of K, so



Z

Ac
K

dµ1 =

Z

Ac
K

dµ2 (10)

hence µ1(AK) = µ2(AK) for all K 2 [0,1). This equality
being true for any semi-interval, it extends to any Borel set.

Lemma 3. Puts and calls are required, by static arbitrage,

to be evaluated at same as risk-neutral measure µQ as the

tradable forward.

Proof.

FP
t =

Z

⌦
Ft dµQ (11)

From Equation 5

Z

⌦
fC(K) dµ1 �

Z

⌦
fP (K) dµ1 =

Z

⌦
Ft dµQ �K (12)

Taking derivatives on both sides, and since fC�fP = S0+
K, we get the Radon-Nikodym derivative:

dµQ

dµ1
= 1 (13)

for all values of K.

III. COMMENT

We have replaced the complexity and intractability of
dynamic hedging with a simple, more benign interpolation
problem, and explained the performance of pre-Black-Scholes
option operators using simple heuristics and rules.

Options can remain non-redundant and markets incomplete:
we are just arguing here for risk-neutral pricing (at the level
of the expectation of the probability measure), nothing more.
But this is sufficient for us to use any probability distribution
with finite first moment, which includes the Lognormal, which
recovers Black Scholes.

A final comparison. In dynamic heding, missing a single
hedge, or encountering a single gap (a tail event) can be dis-
astrous —as we mentioned, it requires a series of assumptions
beyond the mathematical, in addition to severe and highly
unrealistic constraints on the mathematical. Under the class of
fat tailed distributions, increasing the frequency of the hedges
does not guarantee reduction of risk. Further, the standard
dynamic hedging argument requires the exact specification of
the risk-neutral stochastic process between t0 and t, something
econometrically unwieldy, and which is generally reverse
engineered from the price of options, as an arbitrage-oriented
interpolation tool rather than as a representation of the process.

Here, in our Put-Call Parity based methodology, our ability
to track the risk neutral distribution is guaranteed by adding
strike prices, and since probabilities add up to 1, the degrees
of freedom that the recovered measure µQ has in the gap area

between a strike price K and the next strike up, K + �K,
are severely reduced, since the measure in the interval is
constrained by the difference

R c
AK

dµ�
R c
AK+�K

dµ. In other
words, no single gap between strikes can significantly affect
the probability measure, even less the first moment , which is
the exact opposite of dynamic hedging. In fact it is no dif-
ferent from standard kernel smoothing methods for statistical
samples, but applied to the distribution across strikes.3

The assumption about the presence of strike prices con-
stitutes a natural condition: conditional on having a practical

discussion about options, options strikes need to exist. Further,
as it is the experience of the author, market-makers can add
over-the-counter strikes at will, should they need to do so.
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