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Abstract—Payoffs (or risks, beliefs, predictions and exposures)
are precisely defined as mathematical objects, in a legal-like
codification into classes P1 through P4. Some paradoxes between
the formal and the verbalistic are made clear, along with misspec-
ifications and confusions in the decision literature, particularly
with regards to fat-tailed processes and "irrationality" and
"biases" of decision-makers (psychology tests only cover a subset
of payoffs in P2 that do not reflect natural tail exposures in P>2).

We also show how prediction markets (in P2) do not hedge
natural risks in P4.

We start in dimension 1 and extend to larger dimensions.

* * *

THis is a mathematical-legal attempt at formally mapping
payoffs and assessing their memberships in precisely

defined classes. By legal we mean as expressed explicitly in
a codified term sheet, legal contract, or formal legal code,
which naturally converge to the mathematical definitions. The
aims is showing the impossibility of verbalistic discussion of
risk and exposures and the corresponding biases, and shows
how the gap in stochastic properties between the verbalistic
and mathematical increases under fat tails. Many biases in
the psychology-decision science literature (such as the over-
estimation of tail events, or the long shot bias in fat-tailed
domains) are shown to simply result from misdefinitions or
sloppy verbalism.

The discussion is organized as follows. We first introduce
the intuition of the problems through simplified examples.
We then maps payoffs and progressively show differences
in stochastic properties. We then take a look at the decision
theory literature.

I. WHAT IS AN "EVENT"?

The problem starts with the very definition of an event. Each
definition corresponds to different tail properties.

Binary: A binary event is a discrete one that can only take
one value. Binary statements, predictions and exposures are
functions of ω in probability space (Ω, F ,P), with true/false,
yes/no types of answers expressed as events in a specific
probability space. The outcome random variable X(ω) is
either 0 (the event does not take place or the statement is
false) or 1 (the event took place or the statement is true), that
is the set {0,1} or (by affine scaling) the set {aL, aH}, with aL
< aH any two discrete and exhaustive values for the outcomes.

Example of binary: most scientific statements tested by "p-
values", or most conversational nonquantitative "events" as

TABLE I: Four Classes

Class Name Function Fourier Transform E(Ψ)+

Pi notation of φ(Ψ+): φ̂1(t)
P1 Atomic Ψ1 1 p(x)

P2 Binary Ψ+
2 ,Ψ

−
2 (1− πK) + eitπK πK

P3 Vanilla Ψ+
3 ,Ψ

−
3 (1− πK) −K πK+

+
∫∞
K eit dPx

∫∞
K x dPx

P4a Comp. Ψ4 ΣΩiφ̂i(t), ΣΩiE(Ψi)

P4b Gen. Sigm.
∫
φ̂i(t) dΩ

∫
E(Ψi) dΩ

whether a person will win the election, a single individual will
die, a prince will become king or a team will win a contest.

Vanilla: statements, predictions and exposures, also known
as natural random variables, correspond to situations in which
the payoff is either 1) continuous or 2) discrete but can take
infinite values, i.e. is at-least one tailed in its support.

In our classification below, for the purposes of unification,
we will use the state variable approach in place of direct ω,
with x(ω) the elementary security.

Other categories: We add another two categories, for a
total of four, one below the binary and one above the vanilla,
each one being an integration (or summation) of the previous
one in the hierarchy.

The vanillas add a layer of complication: profits for com-
panies or deaths due to terrorism or war can take many,
many potential values. You can predict the company will be
“profitable”, but the profit could be $1 or $10 billion.

The conflation binary-vanilla is a mis-specification often
made in probability, seen in as fundamental texts as in J.M.
Keynes’ approach to probability [1]. Such a conflation is
almost always present in discussions of "prediction markets"
and similar aberrations; it affects some results in research. It
is even made in places by De Finetti in the assessment of what
makes a good "probability appraiser"[2].1

The central point here is that decision-making is not
about being a good probability appraiser –life is not
about probability as a standalone concept but something
more complex in which probability only enters as a

1The misuse comes from using the scoring rule of the following type:if
a person gives a probability p for an event A, he is scored (p − 1)2

or p2, according to whether A is subsequently found to be true or false.
Consequences of A or the fact that there can be various versions of such
event are, at best, an afterthought.

1
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Fig. 1: Comparing payoff in classes P2 to those in P3

(top), or binaries to the vanilla. The vertical payoff shows xi,
(x1, x2, ...) and the horizontal shows the index i= (1,2,...), as
i can be time, or any other form of classification. We assume
in the first case payoffs of {-1,1}, and open-ended (or with
a very remote and unknown bounds) in the second.

kernel, or integral transform.

The designation "vanilla" originates from definitions of
financial contracts.2

Example 1 (Too much snow). The owner of a ski resort in the
Lebanon, deploring lack of snow, deposited at a shrine of the
Virgin Mary a $100 wishing for snow. Snow came, with such
abundance, and avalanches, with people stuck in the cars, so
the resort was forced to close, prompting the owner to quip "I
should have only given $25". What the owner did is discover
the notion of nonlinear exposure under tail events.

Example 2 (Predicting the "Crisis" yet Blowing Up). The
financial firm Morgan Stanley correctly predicted the onset of
a subprime crisis, but they misdefined the event they called
"crisis"; they had a binary hedge (for small drop) and ended
up losing billions as the crisis ended up much deeper than
predicted.

As we will see, under fat tails, there is no such thing

2The “vanilla” designation comes from option exposures that are open-
ended as opposed to the binary ones that are called “exotic”; it is fitting outside
option trading because the exposures they designate are naturally occurring
continuous variables, as opposed to the binary that which tend to involve
abrupt institution-mandated discontinuities.

Snowfall

Payoff

Fig. 2: The graph shows the payofd to the ski resort as a
function of snowfall. So the discrete variable "snow" (vs "no
snow") is not a random event for our purpose. Note that such a
payoff is built via a convex/concave combinations of vanillas.
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Fig. 3: A confusing story: mistaking a decline for an "event".
This shows the Morgan Stanley error of defining a crisis as
a binary event; they aimed at profiting from a decline and
ended up structuring their exposure in a way to blow up
from it. This exposure is called in derivatives traders jargon
a "Christmas Tree", achieved in with P4 through an addition
of the following contracts Ψ−3 (K)1≤i≤3 and quantitities q1,
q2 and q3 such that q1 > 0, q2 , q3 < 0, and q1 < −q2 <
−q3, giving the toxic and highly nonlinear terminal payoff
Ψ4 = q1Ψ−3 (K) + q2Ψ−3 (K − ∆K) + q3Ψ−3 (K − k∆K),
where k > 1. For convenience the figure shows K2 triggered
but not K3 which kicks-in further in the tails.

as a “typical event”, and nonlinearity widens the difference
between verbalistic and precisely contractual definitions.

II. PAYOFF CLASSES P1 THROUGH P4

Let x ≡ xT be a (non necessarily) Markovian continuous
state variables observed at period T , T ∈ R+; x has support
D = (D−,D+). The state variable is one-tailed or two-tailed,
that is bounded on no more than one side, so either D+ =∞
or D− = −∞, or both.

The "primitive" state variable xt is continuously observed
between discrete periods T−∆t and T . The payoff or exposure
function is Ψ1t>τ where τ = {inf(t) : xt /∈ A , t ≤ T},
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Fig. 4: Even more confusing: exposure to events –in class P4

–that escape straightforward verbalistic descriptions. Option
traders call this a "butterfly exposure" in the jargon.
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Fig. 5: Payoff Class P1

a stopping-time conditional discretization of the continuously
sampled time.3

The "payoff kernel" Ψ at time T is a member of the exhaus-
tive and mutually exclusive following 4 classes. We write its
probability distribution φ(Ψ) and characteristic function φ̂(t)
(the distributions of the payoff under the law of state variable
x between T −∆t and T , Ψ itself taken as a random variable)
at T , and p(x) the probability law for x at T .

Note that the various layers are obtained by integration over
the state variable x over segments of the domain D:

Ψi =

∫
Ψi−1(x) dx

A. Atomic Payoff P1

Definition 1 (Class P1, or Arrow-Debreu State Variable).
Ψ ≡ Ψ1(x,K), which can be expressed as the Dirac Delta
function:

Ψ1(x,K) = δ(x−K)

3Without getting into details the stopping time does not have to be off the
same primitive state variable xt –even in dimention 1 –but can condition on
any other state variable.

ψ-(K + 2) +
1

2

ψ+(K - 2)
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Fig. 6: Payoff Class P2

where
∫
K∈D δ(x −K) dx = 1 and

∫
K/∈D δ(x −K) dx = 0

otherwise.

Remark 1 (Characteristic function invariance). The Charac-
teristic function φ̂1(t,K) = 1 for all continuous probability
distributions p(x) of the primitive state variable x.

Proof.
∫
D
ei t δ(x−K)p(x)d(x) =

∫
D
p(x)d(x) = 1 when K is

in the domain of integration.

Remark 2. The expectation of Ψ1 maps to a probability
density at K for all continuous probability distributions.

Proof. Consider that

(1)
i
∂

∂t
φ̂1(t,K) = −i ∂

∂t

∫
D

e(i t δ(x−K))p(x)dx

=

∫
D

e(i t δ(x−K))δ(x−K)p(x)dx

Hence
E(Ψ) = i

∂

∂t
φ̂1(t,K)|t=0= p(K)

B. Binary Payoff Class P2

Definition 2 (Ψ ∈ P2, or Binary Payoffs). Ψ ≡ Ψ2(K)
obtained by integration, so

Ψ+
2 (K) =

∫ K

D−
Ψ1(x)dx

which gives us, writing (for clarity) x for the state variable in
the integrand and X for the observed one:

Ψ+
2 (X,K) =

{
1 if X ≥ K;
0 if X < K.

and

Ψ−2 (K) =

∫ D+

K

Ψ1(x)dx

giving us:

Ψ−2 (X,K) =

{
0 if X > K;
1 if X ≤ K.

which maps to the Heaviside θ function with known properties.
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Fig. 7: Payoff Class P3

Remark 3. The class P2 is closed under affine trans-
formation aHΨ + aL, for all combinations {aH , aL :
aHx + aL ∈ D}. This is true for affine transformations
of all payoff functions in Ψ≥2, the unit of payoff becoming
aH + aL and the lower (upper) bound aL (aH ).

Proposition 1 (Binaries are Thin-Tailed). The probability dis-
tribution φ(Ψ2), a "binary" payoff is a Bernouilli regardless of
the underlying probability distribution over the state variable
x.

Proof. First consider that Ψ+
2 can be written as Ψ+

2 (x) =
1
2 (1 + sgn(x−K)). Its characteristic function φ̂+

2 (t,K):

φ̂+
2 (t,K) =

∫
D
e

1
2 i t (1+sgn(x−K))p(x) dx (2)

=

∫
<K

p(x) dx+

∫
≥K

ei tp(x) dx

So, with πK ≡ P(X ≥ K),

φ̂+
2 (t,K) = (1− πK) + ei tπK

which is the characteristic function of the Bernouilli distribu-
tion.

Note that we proved that Ψ2 is subgaussian as defined in
[3] regardless of p(x) the probability distribution of the
state variable, even if p(x) has no moments.

C. Vanilla Payoff Class P3, building blocks for regular expo-
sures.

Definition 3 (Ψ ∈ P3, or Vanilla Payoff). Ψ ≡ Ψ3(X,K)
obtained by integration, so

Ψ+
3 (X,K) =

∫ X

D−
Ψ2(x−K)dx

which gives us:

Ψ+
3 (X,K) =

{
X −K if X ≥ K;
0 if X < K.

and

Ψ−3 (X,K) =

∫ D+

X

Ψ2(x)dx

giving us:

Ψ−3 (X,K) =

{
K −X if X ≤ K;
0 if X > K.

Assume the support spans the real line. The characteristic
function φ(t,K) can be expressed as:

φ(t,K) =

∫ ∞
−∞

p(X)e
1
2 it(X−K)(sgn(X−k)+1) dX

which becomes

φ(t,K) = (1− πK) + e−itK
∫ ∞
K

eitxp(x)dx (3)

Proposition 2 (Impossibility). It is possible to build a
composite/sigmoidal payoff using the limit of sums of
vanillas with strikes K, and K + ∆K, but not possible
to obtain vanillas using binaries.

Proof. The Fourier transform of the binary does not
integrate into that of the vanilla as one need K struck
at infinity. The sum requires open-ended payoffs on at
least one side.

For many distributions of the state variable the characteristic
function allows explicit inversion (we can of course get
numerical effects). Of some interest is the expectation that
becomes:

E(Ψ+
3 ) =

∫ ∞
K

x p(x) dx−K πK (4)

which maps to common derivatives pricing such as the Bache-
lier approach[4] or it Lognormal generalizations popularized
with [5].

As we can see Eq. 4 doesn’t depend on the portion of the
tail of the distribution below K. Of interest is the "stub" part
of the pricing, which represents the difference between the
vanilla and the binary of same strike K:

∆+(K) ≡ E(Ψ+
3 −KΨ+

2 ) =

∫ ∞
K

x p(x) dx (5)

The ∆ contract has the convenience of sensitivity to fat
tails (or other measures of uncertainty such as the scale
of the distribution), as it extracts the "tail", segment of the
distribution above (below) K.

The idea is to compare
∫∞
K
x p(x) dx and

∫∞
K
p(x) dx and

see how they react in opposite directions to certain parameters
that control the fatness of tails.

Remark 4 (Symmetry/Skewness Problem). There exists a
nondegenerate distribution p*(x) with Ep∗(X) = Ep(X) and
Ep∗(|X|s) = Ep(|X|s) for s ≤ 2 such that:

(6)
sgn
(∫ ∞

K

x p∗(x) dx−
∫ ∞
K

x p(x) dx

)
= −sgn

(∫ ∞
K

p∗(x) dx−
∫ ∞
K

p(x) dx

)
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Fig. 8: Stable Distributions: remarkably the three have exactly
the same mean and mean deviation, but different β symmetry
parameter.
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Fig. 9: Stable Distribution. As we decrease skewness, with
all other properties invariant, the CVar rises and the PVar
(probability associated with VaR) declines.

Proof. The sketch of a proof is as follows. Just consider two
"mirror" asymmetric distributions, p1 and p2, with equal left
and right side expectations.

With P+
p1 ≡

∫∞
0
p1(x) dx and P−p2 ≡

∫ 0

−∞ p2(x) dx, we
assumed P+

p1 = P−p2 . This is sufficient to have all moments
the exact the same (should these exist) and all other attributes
in L1 as well: the distributions are identical except for the
"mirror" of positive and negative values for attributes that are
allowed to have a negative sign.

We write E+
p1 ≡

∫∞
0
x p1(x) dx and E+

p1 ≡
−
∫ 0

−∞ x p2(x) dx. Since E+
p1 = −E−p2 we can observe

that all changes in the expectation of the positive (negative)
side of p2 around the origin need to be offset by a change in
the cumulative probability over the same domain in opposite
sign.

The argument is easily explored with discrete distributions
or mixing Gaussians, but we can make it more general with
the use of continuous non-mixed ones: the α-Stable offers
the remarkable property of allowing changes in the symmetry
parameter while retaining others (mean, scale, mean devia-
tion) invariant, unlike other distribution such as the Skew-
Normal distribution that have a skew parameter that affects

the mean.4In addition to the skewness, the stable can also thus
show us precisely how we can fatten the tails while preserving
other properties.

Example 3 (Mirror Stable distributions). Consider two mirror
α-stable distributions as shown in Figure 9, Sα,β,µ,σ with tail
exponent α = 3

2 and β = ±1, centering at µ = 0 to simplify;

p1(x) = − 3
√

2

e
(µ−x)3

27σ3

 3√3(µ−x)Ai
(

(µ−x)2

3 22/3 3√3σ2

)
σ + 3 3

√
2Ai′

(
(µ−x)2

3 22/3 3√3σ2

)
3 32/3σ

p2(x) = − 3
√

2

e
(µ−x)3

27σ3

 3√3(µ−x)Ai
(

(µ−x)2

3 22/3 3√3σ2

)
σ + 3 3

√
2Ai′

(
(x−µ)2

3 22/3 3√3σ2

)
3 32/3σ

E+
p1 =

3
√

2σ

Γ
(

2
3

) , E−p1 = −
3
√

2σ

Γ
(

2
3

)
E+
p2 =

3
√

2σ

Γ
(

2
3

) , E−p2 = −
3
√

2σ

Γ
(

2
3

)
P+
p1 =

1

3
, P+

p1 =
2

3

P+
p2 =

2

3
, P+

p1 =
1

3

Moving the beta parameter which controls symmetry (and,
only symmetry) to change the distribution have the effect of
moving probabilities without altering expectations.

1) Stochastic Volatility Divergence: Let s be the scale of the
distribution with density ps(x). Consider the ratio of densities;

∃λ : ∀K > λ, 0 < δ < 1,
1

2

(ps−δs(K) + ps+δs(K))

ps(K)
> 1

which is satisfied for continuous distributions with semi-
concave densities.

We will ferret out situations in which
∫∞
K
x p(x) dx (the

"Cvar" or conditional value at risk) and
∫∞
K
p(x) dx (the

Probability associated with "VaR" or value-at-risk) react
to tail fattening situations in opposite manner.

4For instance, the Skew-Normal N(µ, σ, β;x), where β ∈ R controls

the skewness, with PDF
e
− (x−µ)2

2σ2 erfc
(
x−µ√

2σ

)
√
2πσ

, has mean

√
2
π
βσ√

β2+1
+ µ

and standard deviation
√

1− 2β2

π(β2+1)
σ, meaning the manipulation of β

leads to change in expectation and scale. The same applies to the mirrored
Lognormal (where skewness and expectation depends on variance) and the
Pareto Distribution (where the tail exponent controls the variance and the
mean deviation if these exist.
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D. Composite/Sigmoidal Payoff Class P4

Definition 4 (P4, or Composite Payoff). Pieced together sums
of n payoffs weighted by Ωj:

Ψ4 =

n∑
j=1

Ω+
j Φ+

i>1(Kj) + Ω−j Φ−i>1(Kj)

This is the standard arithmetically decomposable composite
payoff class, if we assume no conditions for stopping time –
the ones encountered in regular exposures without utility taken
into account, as a regular exposure can be expressed as the
difference of two, more precisely Ψ+

2 (K)−Ψ−2 (K) ,∀K ∈ D.

Remark 5. The class P4 is closed under addition.

III. ACHIEVING NONLINEARITY THROUGH P4

IV. MAIN ERRORS IN THE LITERATURE

The main errors are as follows.
• Binaries always belong to the class of thin-tailed dis-

tributions, because of boundedness, while the vanillas
don’t. This means the law of large numbers operates very
rapidly there. Extreme events wane rapidly in importance:
for instance, as we will see further down in the discussion
of the Chernoff bound, the probability of a series of 1000
bets to diverge more than 50% from the expected average
is less than 1 in 1018, while the vanillas can experience
wilder fluctuations with a high probability, particularly
in fat-tailed domains. Comparing one to another can be
a lunacy.

• The research literature documents a certain class of
biases, such as "dread risk" or "long shot bias", which
is the overestimation of some classes of rare events, but
derived from binary variables, then falls for the severe
mathematical mitake of extending the result to vanillas
exposures. If ecological exposures in the real world tends
to have vanillas, not binary properties, then much of these
results are invalid.

Let us return to the point that the variations of vanillas
are not bounded. The consequence is that the prediction of
the vanilla is marred by Black Swan effects and need to
be considered from such a viewpoint. For instance, a few
prescient observers saw the potential for war among the
Great Power of Europe in the early 20th century but virtually
everyone missed the second dimension: that the war would
wind up killing an unprecedented twenty million persons.

V. THE APPLICABILITY OF SOME PSYCHOLOGICAL
BIASES

VI. MISFITNESS OF PREDICTION MARKETS

A. The Black Swan is Not About Probability But Payoff

In short, the vanilla has another dimension, the payoff, in
addition to the probability, while the binary is limited to the
probability. Ignoring this additional dimension is equivalent
to living in a 3-D world but discussing it as if it were 2-
D, promoting the illusion to all who will listen that such an
analysis captures all worth capturing.

TABLE II: True and False Biases in the Psychology Literature

Alleged Bias Misspecified domain Justified domain
Derived in P2

Dread Risk Comparing Terrorism
to fall from ladders

Comparing risks of
driving vs flying

Overestimation
of small
probabilities

Open-ended payoffs
in fat-tailed domains

Bounded bets in labo-
ratory setting

Long shot bias Convex financial pay-
offs

Lotteries

TABLE III: Adequate and inadequade decision domains

Application Questionable
domain

Justified domain

Prediction
markets

Revolutions Elections

Prediction
markets

"Crashes" in Natural
Markets (Finance)

Sports

Forecasting Judging by frequency
in venture capital and
other winner take all
domains;

Judging by frequency
in finite bets

Now the Black Swan problem has been misunderstood.
We are saying neither that there must be more volatility in
our complexified world nor that there must be more outliers.
Indeed, we may well have fewer such events but it has been
shown that, under the mechanisms of “fat tails”, their “impact”
gets larger and larger and more and more unpredictable.

Two points.
1) Binary predictions are more tractable than standard

ones: First, binary predictions tend to work; we can learn
to be pretty good at making them (at least on short timescales
and with rapid accuracy feedback that teaches us how to
distinguish signals from noise —all possible in forecasting
tournaments as well as in electoral forecasting — see Silver,
2012). Further, these are mathematically tractable: your worst
mistake is bounded, since probability is defined on the interval
between 0 and 1. But the applications of these binaries tend to
be restricted to manmade things, such as the world of games
(the “ludic” domain).

It is important to note that, ironically, not only do Black
Swan effects not impact the binaries, but they even make them
more mathematically tractable, as will see further down.

2) Binary predictions are often taken as a substitute for
standard ones: Second, most non-decision makers tend to
confuse the binary and the vanilla. And well-intentioned
efforts to improve performance in binary prediction tasks can
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have the unintended consequence of rendering us oblivious to
catastrophic vanilla exposure.
Remark:More technically, for a heavy tailed distribution
(defined as part of the subexponential family), with at least
one unbounded side to the random variable (one-tailedness),
the variable prediction record over a long series will be of
the same order as the best or worst prediction, whichever in
largest in absolute value, while no single outcome can change
the record of the binary.

B. Chernoff Bound

The binary is subjected to very tight bounds. Let
(Xi)1<i≤n bea sequence independent Bernouilli trials
taking values in the set {0, 1}, with P(X = 1]) = p and
P(X = 0) = 1 − p, Take the sum Sn =

∑
1<i≤nXi. with

expectation E(Sn)= np = µ. Taking δ as a “distance from
the mean”, the Chernoff bounds gives:
For any δ > 0

P(S ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
and for 0 < δ ≤ 1

P(S ≥ (1 + δ)µ) ≤ 2e−
µδ2

3

Let us compute the probability of coin flips n of having
50% higher than the true mean, with p= 1

2 and µ = n
2 :

P
(
S ≥

(
3
2

)
n
2

)
≤ 2e−

µδ2

3 = e−n/24

which for n = 1000 happens every 1 in 1.24× 1018.

C. Fatter tails lower the probability of remote events (the
binary) and raise the value of the vanilla.

The following intuitive exercise will illustrate what happens
when one conserves the variance of a distribution, but “fattens
the tails” by increasing the kurtosis. The probability of a
certain type of intermediate and large deviation drops, but their
impact increases. Counterintuitively, the possibility of staying
within a band increases.

Let x be a standard Gaussian random variable with mean
0 (with no loss of generality) and standard deviation σ. Let
P>1σ be the probability of exceeding one standard deviation.
P>1σ= 1 − 1

2 erfc
(
− 1√

2

)
, where erfc is the complementary

error function, so P>1σ = P<1σ '15.86% and the probability
of staying within the “stability tunnel” between ± 1 σ is 1−
P>1σ− P<1σ ' 68.3%.

Let us fatten the tail in a variance-preserving manner, using
the “barbell” standard method of linear combination of two
Gaussians with two standard deviations separated by σ

√
1 + a

and σ
√

1− a , a ∈(0,1), where a is the “vvol” (which is
variance preserving, technically of no big effect here, as a
standard deviation-preserving spreading gives the same quali-
tative result). Such a method leads to the immediate raising of

the standard Kurtosis by
(
1 + a2

)
since

E(x4)
E(x2)2

= 3
(
a2 + 1

)
,

where E is the expectation operator.

P >1σ = P<1σ

= 1− 1

2
erfc

(
− 1√

2
√

1− a

)
− 1

2
erfc

(
− 1√

2
√
a+ 1

)
(7)

So then, for different values of a in Eq. 1 as we can see
in Figure 2, the probability of staying inside 1 sigma rises,
“rare” events become less frequent.

Note that this example was simplified for ease of ar-
gument. In fact the “tunnel” inside of which fat tailed-
ness increases probabilities is between−

√
1
2

(
5−
√

17
)
σ and√

1
2

(
5−
√

17
)
σ (even narrower than 1 σ in the example, as it

numerically corresponds to the area between -.66 and .66), and
the outer one is ±

√
1
2

(
5 +
√

17
)
σ , that is the area beyond

±2.13 σ.

D. The law of large numbers works better with the binary
than the variable

Getting a bit more technical, the law of large numbers works
much faster for the binary than the variable (for which it may
never work, see Taleb, 2013). The more convex the payoff,
the more observations one needs to make a reliable inference.
The idea is as follows, as can be illustrated by an extreme
example of very tractable binary and intractable variable.

Let xt be the realization of the random variable X ∈ (-∞,
∞) at period t, which follows a Cauchy distribution with
p.d.f. f (xt)≡ 1

π((x0−1)2+1) . Let us set x0 = 0 to simplify
and make the exposure symmetric around 0. The variable
exposure maps to the variable xt and has an expectation
E (xt) =

∫∞
−∞ xtf(x)dx, which is undefined (i.e., will never

converge to a fixed value). A bet at x0 has a payoff mapped
by as a Heaviside Theta Function θ>x0

(xt) paying 1 if
xt > x0and 0 otherwise. The expectation of the payoff is
simply E(θ(x)) =

∫∞
−∞ θ>x0

(x)f(x)dx=
∫∞
x0
f(x)dx, which

is simply P (x > 0). So long as a distribution exists, the binary
exists and is Bernouilli distributed with probability of success
and failure p and 1—p respectively .

The irony is that the payoff of a bet on a Cauchy, admittedly
the worst possible distribution to work with since it lacks both
mean and variance, can be mapped by a Bernouilli distribution,
about the most tractable of the distributions. In this case the
variable is the hardest thing to estimate, and the binary is the
easiest thing to estimate.

Set Sn = 1
n

∑n
i=1 xti the average payoff of a variety of vari-

able bets xtiacross periods ti, and Sθn = 1
n

∑n
i=1 θ>x0

(xti).
No matter how large n, limn→∞ Sθn has the same properties
— the exact same probability distribution —as S1. On the
other hand limn→∞ Sθn=p; further the presaymptotics of Sθn
are tractable since it converges to 1

2 rather quickly, and the
standard deviations declines at speed

√
n , since

√
V (Sθn) =√

V (Sθ1)
n =

√
(1−p)p
n (given that the moment generating func-

tion for the average is M(z) =
(
pez/n − p+ 1

)n
).
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Fig. 10: The different classes of payoff f(x) seen in relation to
an event x. (When considering options, the vanilla can start at
a given bet level, so the payoff would be continuous on one
side, not the other).

The binary has necessarily a thin-tailed distribution, regard-
less of domain

More, generally, for the class of heavy tailed distributions,
in a long time series, the sum is of the same order as the
maximum, which cannot be the case for the binary:

lim
X→∞

P (X >
∑n
i=1 xti)

P
(
X > max (xti)i≤2≤n

) = 1 (8)

Compare this to the binary for which

lim
X→∞

P
(
X > max (θ(xti))i≤2≤n

)
= 0 (9)

The binary is necessarily a thin-tailed distribution, regardless
of domain.

We can assert the following:
• The sum of binaries converges at a speed faster or equal

to that of the variable.
• The sum of binaries is never dominated by a single event,

while that of the variable can be.

How is the binary more robust to model error?

In the more general case, the expected payoff of the variable
is expressed as

∫
A
xdF (x) (the unconditional shortfall) while

that of the binary=
∫̀

A dF (x), where A is the part of the
support of interest for the exposure, typically A≡[K,∞),
or (−∞,K]. Consider model error as perturbations in the
parameters that determine the calculations of the probabilities.
In the case of the variable, the perturbation’s effect on the
probability is multiplied by a larger value of x.

As an example, define a slighly more complicated variable
than before, with option-like characteristics, V (α,K) ≡∫∞
K
x pα(x)dx and B(α,K) ≡

∫∞
K
pα(x) dx, where V is

the expected payoff of variable, B is that of the binary, K is
the “strike” equivalent for the bet level, and with x∈[1,∞) let
pα(x) be the density of the Pareto distribution with minimum
value 1 and tail exponent α, so pα(x) ≡ αx−α−1.

Set the binary at .02, that is, a 2% probability of exceeding a
certain number K, corresponds to an α=1.2275 and a K=24.2,
so the binary is expressed as B(1.2, 24.2). Let us perturbate
α, the tail exponent, to double the probability from .02 to .04.
The result is B(1.01,24.2)

B(1.2,24.2) = 2. The corresponding effect on the

variable is V (1.01,24.2)
V (1.2,24.2) = 37.4. In this case the variable was

∼18 times more sensitive than the binary.
—-

E. My of Tail Overestimation in Psychology of Tail Events

1) Long Shot Bias, Dread Risk, a Brief Survey of the
Literature:

2) Anectodalism with Cass Sunstein’s Critique of the Pre-
cautionary Principle:
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