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Abstract—Direct measurements of Gini index by conventional
arithmetic calculations are poor estimators, even if paradoxically,
they include the entire population, as because of super-additivity
they cannot lend themselves to comparisons between units of
different size; further, intertemporal analyses are vitiated by the
population changes. The Gini of aggregated units A and B will
be higher than those of A and B computed separately. This effect
becomes more acute with fatness of tails. When the sample size is
smaller than entire population, the estimation error is extremely
high.

The subadditivity has been proved by Zagier in 1983; we found
a new proof through a more general lemma for ordered sub-
sums applicable for ranked variables. We also show the effect of
kurtosis on the subadditivity and the consequences for statistical
estimation.

We compare the standard methodologies to the indirect meth-
ods via maximum likelihood estimation of tail exponent.

The conventional literature on Gini index cannot be trusted
and comparing countries of different sizes makes no sense; nor
does it make sense to make claims of "changes in inequality"
based on such a measure.

We suggest a simple but efficient methodology to calculate the
Gini index.

I. INTRODUCTION/SUMMARY

Consider 10 separate countries, cities, or other units
of equal size, with population 10

3. Assume the wealth in
each unit follows a power law distribution, say a Pareto-
Lomax, all with the exact same parameters. Assume a
tail exponent of 1.1. The average Gini index as obtained
by direct measurement will be ⇡ .71 per country. Now
aggregate them into a single country. The composite
Gini —as traditionally and currently measured — will
be ⇡ .75, that is 6% higher –for the same sample.
This inconsistency implies not only that the Gini cannot
lend itself to comparisons between units of different size
but that intertemporal assessments are vitiated by the
population changes.

Further, the sampling error remains high throughout.
The effect is similar to the one about percentile in [1].
This note shows that
• as a consequence of the inequality, the Gini index

obtained by conventional "direct" measurement as
estimator is not consistent, downward biased and
lends itself to illusions

• the superadditivity increases with the variance and
fat-tailedness

• maximum likelihood (ML) parametrization of tail
exponent is more efficient, unbiased, and econom-
ical of data: its error rate can be more than one
order of magnitude smaller than the "direct" Gini
measurement.

Further, wee get explicit distributions for the maximum
likelihood estimator.

Table I shows biases and errors in the computation the
Gini index via different methods, which presents our story
and its conclusion. It compares the Gini index obtained by
conventional arithmetic calculations to the Maximum Likeli-
hood estimation via tail exponent by varying the population
size n. These calculations are for the same data, generated
by Monte Carlo simulations (108) for a Pareto distribution
with exponent ↵ = 1.1, meaning finite mean and infinite
variance (close to the "Pareto 80/20" in popular and managerial
discussions). For the first category, "direct", we estimated the
Gini using conventional methods of summing individual units
(say wealth or income per person, or another unit in the
physical domain). For the second, corresponding to Maximum
Likelihood methods (ML), we estimated the tail exponent
from the data using ML estimation methods and expressed
the corresponding Gini.

TABLE I
COMPARISON OF DIRECT GINI TO ML ESTIMATOR, ASSUMING TAIL

↵ = 1.1

n Direct ML
(popul Mean Bias STD Mean STD Error

or sample) ratio
103 0.711 -0.122 0.0648 .8333 0.0476 1.4
104 0.750 -0.083 0.0435 .8333 0.015 3
105 0.775 -0.058 0.0318 .8333 0.0048 6.6
106 0.790 -0.043 0.0235 .8333 0.0015 156
107 0.802 -0.033 0.0196 .8333 ⇡ 0 > 105

We note that there are many wealth distributions, and we
took the one with the thickest tails, in the class of powerlaws.
Thinner tail distributions do not generate significant bias.

II. THE GINI ESTIMATED AND ITS SUPERADDITIVITY

A. "Direct" Estimators

Where g is the Gini index and X and X

0 are independent
(etc., etc.) with mean µ:

g =

1

2

E (|X �X

0|)
µ

. (1)
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Fig. 1. Histogram of the distribution of direct estimation, population = 106.
We notice a long right tail bounded at 1.
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Fig. 2. Distribution of indirect estimator via exponent n = 104, 105, 106.

In other words the Gini is the mean expected deviation
between any two random variables ("mean difference") scaled
by the mean.

The "direct estimator" of the Gini of a sample becomes half
the relative mean difference, where sample Y = (Y
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which can be further simplified
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where Y

(1)

, Y

(2)

, ..., Y

(n)

are the ordered statistics of Y
1

, ..., Y

n

such that: Y
(1)

< Y
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< ... < Y

(n)

.

B. Superadditivity and Results around the Zagier inequality

It turned out after we devised the proof that Zagier proved
the inequality in [2] and [3]. The paper appears to be unnoticed
by the economics community concerned with measurement of
inequality. As we used another route, we proved a lemma that
is useful for sums and sub-sums of ordered variables, and
facilitates results about inequalities in other contexts.

We can show that bG is a slowly converging estimator,
downward biased, inconsistent under aggregation. We start
with an inequality:

Theorem 1 (The Zagier inequality). Partition the n data into p

sub-samples N = N

1

[ . . .[N

p

of respective sizes n
1

, . . . , n

p

,
with

P
m

i=1

n

i
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1

, . . . , S

p

be the sum of variables
over each sub-sample, and S =

X
p

i=1

S

i

be that over the
whole sample. Then we have:
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Proof. We start with p = 2 and use elementary recursion to
generalize.
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Proving the Gini estimators can be done by proving the
following lemma about ordered sums:

Lemma 1. Let n
Y

and n

Z

be the relative sample sizes of vec-
tors Y and Z respectively, with Y = (Y
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Define the multiset of cardinality n, �(n) , {
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Now, with m < n, m 2 N+ we select p =

n
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m

permutations indexed by k = 1, 2, . . . , p of subsets of size
m in �(n).

More precisely, we define the subset �
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It is a standard result (from the rearrangement inequality)
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the latter is a non-ordered sum.
We calculate the LHS of the inequality in Equation 5:
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For n = 2:
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we have I

000 � 0, which proves the lemma. To prove the rest
of the theorem, it suffices to see that the lemma holds for all
integers 0 < m < n.

This inequality is similar to the inequality in theorem 1 in
[1].

The theorem holds for, of course, any one-tailed distribution.
But our focus is on fat tails. .

Fig. 3. Higher moment changes while preserving lower moments.
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C. Extracting the Effect of Fattailedness in the inequality and
sampling problem

Proposition 1. The inequality becomes equality when all
subsets are identical.

Proof. Consider a random variable X > 0 that has four
(positive) realizations x

1

< x
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< x

4

. We construct three
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The "direct" estimators can be calculated from Equation 3

as follows: bG(A) =
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, bG(B) =
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which can be shown to be strictly positive for all values of
� > 0 and to increase with �. Further it will be 0 for identical
samples A and B.

By introducing m additional intermediate values between
any two units, say x
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, . . . , x
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we can show the
property holds for all values of N that produce equal size
subsets (that is for 2 subsets, N = 8, 10, . . .

Proposition 2. The inequality increases with a mean-
preserving difference between the variances of the subsets.
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and we can tighten the inequality for that specific case:
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The difference between the Gini estimator for the aggregate
C and the average of the Gini estimates for the components A
and B will be a convex function in �, hence increases with the
fatness of tails (how far the highest realization is away from
the rest), as we can see next.

Proposition 3. The inequality increases with total kurtosis of
the population.

Proof.
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As outlined in the methodology in Figure 3 we can isolate
a parameter � that controls kurtosis without affecting lower
moments; we need to have as bounds to preserve the variance:
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1) Known distribution: If we know the distribution of X,
then Equation 1 is straightforward. In the event of known
cumulative distribution function �, consider that |X � X

0|=
X +X

0 � 2min(X,X

0
). Hence the expectation becomes:
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Rewriting � = �(x,�), where � is the parameter of the
distribution that is stochasticized. With � > � � 0:
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This is in case the distribution depends on the scale.
Heterogeneous distributions:

Remark 1. (i) Let �
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Further, we can use a lemma.

Lemma 2. To be mean preserving, the square-integrable func-
tion s(x) modifying a cumulative distribution �(x) requiresR
s(x) dx = 0. And to be mean and variance preserving

requires
R
xs(x)dx = 0.

Proof. Integrating by parts for positive r.v.,
µ = K +

R
x

@�

0
(x)

@x

dx, we get
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L
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(1� �(x)� s(x)) dx. A similar reasoning for the
variance.

We can also extract the effect of the Kurtosis on the Gini
as follows:
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2) Special case of the Lognormal: In the case of

the lognormal L(µ,�), while � is not strictly the scale,
it can be used to simulate stochastic volatility, and
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There is a term missing we can ignore for now or add later.
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Fig. 4. Fatness of Tails expressed as � in the case of the Lognormal

Another Route

G(�) = 2 

⇣
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⌘
� 1 (18)

For variance preserving perturbation: �

+

=q
log

�
1� e

(���)

2
�
, ��

= � + � Which is the equivalent

of having part of the sample with variance �+

2

and the other
part with �+

2

, each with half the ratio. We already know that

G(�) � 1

2

�
G(�

+

) +G(�

�
)

�
(19)

and more generally for any linear combination of variables
from separate distributions.

We can show that for the stochastic volatility case

G(�,�) � G(�, 0) (20)

In other words, an increase in the kurtosis of the distribution
translates into an increase in the theoretical Gini.

This section is to be completed

III. ESTIMATION FROM TAIL ↵ VIA MAXIMUM
LIKELIHOOD

So, next we show that for the case power law, an "indirect"
estimation via the Hill estimator of the tail exponent is a more
efficient way to estimate the Gini index.

A. Distribution of the exponent

Next we calculate the distribution of the tail exponent of a
power law. We start with the standard Pareto distribution for
random variable X with pdf:

�

X

(x) = ↵L

↵

x

�↵�1

, x > L (21)

Assume L = 1 by scaling.
The likelihood function is L =

Q
n

i=1

↵x

�↵�1

i

. Maximizing
the Log of the likelihood function (assuming we set the
minimum value) log(L) = n(log(↵) + ↵ log(L)) � (↵ +

1)

P
n

i=1

log (x

i

) yields: ↵̂ =

nPn
i=1 log(xi)

. Now consider

10 20 30 40 50
U

0.83250

0.83255

0.83260

�

Fig. 5. convergence of the index with number of summands U

l = �
Pn

i=1 logXi

n

. Using the characteristic function to get the
distribution of the average logarithm yield:

 (t)

n

=

✓Z 1

1

f(x) exp

✓
it log(x)

n

◆
dx

◆
n

=

✓
↵n

↵n� it

◆
n

which is the characteristic function of the gamma distribution
(n,

1

↵n

). A standard result is that ↵̂0 , 1

l

will follow the
inverse gamma distribution with density:

�

↵̂

(a) =

e

�↵n
↵̂

�
↵n

↵̂

�
n

↵̂�(n)

, a > 0

.
1) Debiasing: Since E(↵̂) =

n

n�1

↵ we elect another –
unbiased– random variable ˆ

↵

0
=

n�1

n

↵̂ which, after scaling,

will have for distribution �
ˆ

↵

0(a) =
e

↵�↵n
a

(

↵(n�1)
a )

n+1

↵�(n+1)

.
2) Truncating for ↵ > 1: Given that values of ↵  1 lead

to infinite mean (hence no Gini) we restrict the distribution to
values greater than 1+ ✏, ✏ > 0. Our sampling now applies to
lower-truncated values of the estimator, those strictly greater
than 1, with a cut point ✏ > 0, that is,

P
n�1

log(xi)
> 1 + ✏, or

E(↵̂|
↵̂>1+✏

): �
ˆ

↵

00(a) =

�

↵̂0 (a)R 1
1+✏ �↵̂0 (a) da

, hence the distribution
of the values of the exponent conditional of it being greater
than 1 becomes:

�

ˆ

↵

00(a) =

e

↵n2

a�an

⇣
↵n

2

a(n�1)

⌘
n

a

⇣
�(n)� �

⇣
n,

n

2
↵

(n�1)(✏+1)

⌘⌘
, a � 1 + ✏ (22)

B. The distribution of the ↵-derived Gini

Now define the "derived Gini" from estimated ↵, G ,
1

2

ˆ

↵

00�1

. After some manipulation, we have �
G

(g) the distri-
bution of the derived Gini:

�

G

(g) =

2

n

e

� 2↵gn2

(g+1)(n�1)

⇣
↵gn

2

(g+1)(n�1)

⌘
n

g(g + 1)

⇣
�(n)� �

⇣
n,

n

2
↵

(n�1)(✏+1)

⌘⌘
,

g 2 (0,

1

2✏+ 1

) (23)
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Fig. 6. Standard deviation of the ML estimator with an increase of population

C. Moments of the estimated Gini index

We are looking for moment of order m, that is µ(m) as
R 1

2✏+1

0

g

m

�

G

(g)dg. By substitution, with u =

g

g+1

,

µ(m) =

Z 1
2✏+2

0

2

n

⇣
1

1�u

⌘
m

u

m�1

e

� 2↵n2u
n�1

⇣
↵n

2
u

n�1

⌘
n

�(n)� �
⇣
n,

n

2
↵

(n�1)(✏+1)

⌘
du

using the property that
P1

i=0

u

i

�
i+m�1

i

�
= (1 � u)

�m and
that

Z 1
2✏+2

0

2nuium�1e�
2↵n2u
n�1

⇣
↵n2u
n�1

⌘n

�(n)� �
⇣
n, n2↵

(n�1)(✏+1)

⌘ du =

✓
1

2✏+ 2

◆i+m

⇣
↵n2

(n�1)(✏+1)

⌘�i�m ⇣
�(i+m+ n)� �

⇣
i+m+ n, n2↵

(n�1)(✏+1)

⌘⌘

�(n)� �
⇣
n, n2↵

(n�1)(✏+1)

⌘

(24)

we finally have, with U a natural number:

µ(m) = lim

U!+1

UX

i=0

�
i+m�1

i

�✓⇣
1

2✏+2

⌘
i+m

⇣
↵n

2

(n�1)(✏+1)

⌘�i�m

◆

�(n)� �
⇣
n,

n

2
↵

(n�1)(✏+1)

⌘

✓
�(i+m+ n)� �

✓
i+m+ n,

n

2

↵

(n� 1)(✏+ 1)

◆◆
(25)

which, in practice, with values of U ⇡ 7 produces appropriate
approximations, see Figure 5. We get explicit (rather, semi-
explicit) expressions of the standard deviations and show their
decline in Figure 6.

D. Some comments

For recent wealth data restating Pareto and Mandelbrot’s
point [4], see [5]. Some authors missed the point: see [6], [7],
[8]. In some cases, researchers get it backwards, getting ↵

from G [9].
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NOTES
1We don’t need for this proof to examine n = 3, but let’s do it for

verification. For n = 3, 2P3 = 3 , �(3) = {�1, �1+�2, �1+�2+�3} and the
various subsets where cardinality 1 and their complements (or, alternatively,
the subsets of cardinality 2 and their complements) are

8
<

:

{�1, �1 + �2} , {�1 + �2 + �3}
{�1, �1 + �2 + �3} , {�1 + �2}

{�1 + �2, �1 + �2 + �3} , {�1}

9
=

;

hence

I1(2, 3) = I3(1, 3) =
�2�3+�1(�2+4�3)

2(2�1+�2)(3�1+2�2+�3)
� 0

I2(2, 3) = I2(1, 3) =
(�1+�3)(�2+�3)

2(2�1+�2+�3)(3�1+2�2+�3)
� 0

I3(2, 3) = I1(1, 3) =
(2�2+�3)

2+�1(4�2+�3)
2(2�1+2�2+�3)(3�1+2�2+�3)

� 0
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